ECN for RTP over UDP/IP

draft-westerlund-avt-ecn-for-rtp-00.txt

Magnus Westerlund
Ingemar Johansson
Colin Perkins

Aims & Rationale

- Much real-time multimedia traffic uses RTP running over UDP/IP
 - Modern codecs are highly adaptive; good implementations of RTP react to packet loss as a congestion signal
 - But, impact of packet loss on real-time audio-visual flows is highly visible and disrupts user experience
 - ECN support would allow codec to adapt before loss occurs
 - The application controls how it reduces its sending rate, and hence how media quality is impacted
 - Better user experience than responding to packet loss, and more network friendly

ECN for RTP over UDP/IP

- Initially seems straight-forward:
 - Signal ECN support in SIP using SDP offer/answer
 - Set ECT on RTP data packets sent in UDP/IP
 - Send feedback piggybacked on RTCP reception reports
 - (No portable way to monitor received ECN marks on UDP)
 - Respond to ECN-CE by varying media encoding rate

Yes, but...

Why is ECN for RTP Difficult? (1/5)

Signalling

- RTP relies on out-of-band signalling to initiate sessions; no in-band handshake or negotiation
 - i.e. no equivalent of TCP three-way handshake to negotiate ECN support

- SIP can negotiate the end-point capability to support ECN,
 but says nothing about the media path
- ICE can be extended to test the media path in some cases

Why is ECN for RTP Difficult? (2/5)

- Feedback
 - RTP does not explicitly acknowledge receipt of datagrams
 - RTCP provides reception quality feedback
 - Usual feedback interval O(seconds); but configurable
 - RTP/AVPF allows rapid feedback, provided feedback event rate within configured bandwidth constraint

Implies slower adaptation than TCP if congestion events are frequent

Why is ECN for RTP Difficult? (3/5)

- Congestion Response
 - Modern codecs can adapt over a wide rate, but often have constraints on what transmission rates are possible, and how quickly they can adapt
 - Frequent variation destroys user experience

 Can respond to congestion, but unlikely to be TCP friendly (no worse than RTP over UDP/IP without ECN)

Why is ECN for RTP Difficult? (4/5)

- Middle-boxes
 - RTP explicitly supports application level translators and mixers within the network
 - Translator is a middle-box; must interpose itself in the ECN negotiation, split the connection, respond to congestion
 - Mixer acts as end-point; terminates transport connections

Only part of an RTP session may support ECN

Why is ECN for RTP Difficult? (5/5)

Multicast

- RTP is inherently a group communication protocol
 - ASM with many-to-many groups and multicast feedback
 - SSM with unicast feedback, potentially very large groups
 - IPTV channels, potentially millions of receivers

- ECN per sender tree? For the entire group? All receivers?
 Again, only parts of the session may support ECN
- May require receiver driven congestion response (layered coding?)

ECN for RTP over UDP/IP: Proposal

- Four pieces to the proposed solution:
 - Negotiation of ECN capability
 - SIP with SDP offer/answer; ICE option
 - Initiation and verification of ECT
 - Using RTP and RTCP
 - Using STUN and ICE
 - Ongoing use of ECN with RTP session
 - Failure detection, verification, and fallback

Initiation and Verification of ECT

- If end-points are capable, how to negotiate ECT?
 - Using RTP and RTCP
 - Mark a small fraction of RTP/UDP/IP packets as ECT during probing phase; don't ECN mark any RTCP packets
 - New RTCP feedback packet reports receipt of ECT marked packets
 - Sender switches to using ECN for all RTP packets once the receiver population is stable, and all receivers report receipt of ECT marked packets
 - Choice to use ECN made on per-sender basis
 - Implications for multicast groups
 - Using STUN/ICE see draft for details

Ongoing use of ECN with RTP

- RTCP reporting and feedback
 - Regular RTCP reports; use RTP/AVPF for CE events
 - ECN nonce + RLE or bit vector of lost/marked packets
- Congestion response
 - Sender driven, e.g. TFRC
 - Receiver driven, e.g. layered coding
- Detecting failure
 - Misbehaving receivers or middle-boxes
 - Path changes and/or mobility
 - Group membership changes

Continually monitor ECN operation and fallback to non-ECN mode if necessary

Input and Future Directions

- Technical details of RTP/RTCP extensions to be discussed in AVT on Friday
 - draft-westerlund-avt-ecn-for-rtp-00.txt
- From this group:
 - ECN for RTP over UDP/IP is a significant change compared to ECN for TCP/IP
 - Is this conceptually a good idea?
 - What transport issues have we missed?
 - Please read the draft!