Quo Vadis, DCCP?

Pasi Sarolahti & Tom Phelan

IETF-75, Stockholm
July 27, 2009
DCCP in a Nutshell

• Standard solution for reliably transmitting congestion feedback for unreliable datagram flow
 – End-to-end transport protocol
 – WG started in 2002

• Choice of congestion control mechanisms
 – TCP-like congestion control
 – TCP-friendly rate control (TFRC)
 – TFRC for small packets

• Other features
 – ECN support, partial checksums, etc.
Past Work

- RFC 4336 Prob Statemt
- RFC 4340 DCCP
- RFC 4341 CCID 2
- RFC 4342 CCID 3
- RFC 4828 TFRC-SP
- RFC 5238 DCCP-DTLS
- RFC 5348 TFRC-bis
- RFC Editor simul-open
- RFC Editor serv-codes
- RFC Editor ccid-4
- RFC Editor dccp-rtp
- RFC Editor quickstart

Dimensions: 792.0x612.0
Currently Open WG Items

- faster-restart
 (Expired)
Implementations

• Linux kernel
 – CCID-2
 – CCID-3
 – NAT implementation
 – CCID-4 and ECN support in progress

• DCCP-TP
 – User-space implementation optimized for portability
 – CCID-2
 – CCID-3 with RFC 5348 (RFC3448bis)
 – DCCP-NAT encapsulation (draft-phelan-dccp-natencap)
 – Fresh start code – no code shared with Linux kernel implementation
 – See http://www.phelan-4.com/dccp-tp/
Main Current Challenges

• **Middleboxes** don’t handle DCCP packets
 – Significant disincentive for turning on DCCP
• Better **APIs** to communicate congestion/rate information would improve efficiency
• Not much experience on **congestion control algorithms** with real applications
 – Potentially room for improvement
Ideas for New Work on DCCP

• UDP framing for X
 – draft-phelan-dccp-natencap DCCP specific, is there general solution?

• DCCP as generic congestion control framework
 – Use congestion feedback channel for new types of applications
 – Support innovative uses of explicit congestion signals
 – Feedback for adjusting (en)coding algorithms
 – New types of distributed content sharing, games

• Better congestion control algorithms
 – Beyond TCP-*??
MulTFRC

• CC. mechanism which is “N-TCP-friendly”
 – N can also be 0.3, 2.8, ...

• More appropriate behavior than multiple real TFRCs
 – See talk in ICCRG meeting for more details

• Proposal: specify mechanism (like TFRC), then CCID
 – Implementation: a handful of simple changes to TFRC code

• Better bottleneck saturation while still being reasonably TCP-friendly
 – N limited to 6 in draft; yields 95% utilization of otherwise empty bottleneck; only 75% with 1 TCP-friendly flow
 – Could this create an incentive to use DCCP?
WHERE TO GO, DCCP?