HTTP Architecture in Security
Protocols



Wishful Thinking
“Just Use HTTP”

Photo by Arnaud Bertrande



Reality

_.Q.‘....:Qw.ww.m .-'-‘q, RN
Ly i~ " Pk

Photo by John Haslam



Outline

Problem Definition
Architectural Styles
REST

Not using REST? Really?
HTTP Compliance

Security Considerations

ides 5-9

ides 10-11
ides 12-19
ides 20-25
ides 26-29

n um unh unh m

Slides 30-33



Problem Statement

* Give information to help people use HTTP
securely in protocol design

* Go beyond “use HTTP as a substrate” (BCP56)
and cover “use HTTP”




Is there a Real Problem?

. Standards using HTTP have been blocked by
HTTP intermediaries

. Application implementations ship without
required HTTP features = interop FAIL

. Existing tools made useless by stupid errors

4. Session hacks introduced security holes

. Manageability (e.g. firewall filtering) seriously
hampered by tunneling

. Extensibility of HTTP lost in new standards



Pitfalls

HTTP compliance is difficult to test
particularly in the context of an application

Many HTTP features are obscure

HTTP intermediaries affect connectivity and
interoperability but are obscure

HTTP scalability and extensibility
characteristics are easy to break

lgnorance of HTTP architecture has cost us



Standards activity

BCP56 mostly tries to discourage use of HTTP

Let’s adopt a reality-based approach

— Protocol police: accept that people extend HTTP in
these ways

— Protocol designers: accept that HTTP has
intermediaries and backwards-compatibility issues

Revising BCP 56
Revising RFC 2616 — seven sections



Security benefits of HTTP fairway

Use Existing Software

* Less new code = Less new bugs
* Easier to test, audit, manage
* Known security properties

* Lots of expertise already out there

Where does this go wrong?



Architectural Styles & Features

Caching

Store and

forward

Sessions

Client/
server

Federated

Messaging

Pipe and
filter

Dub/S’?)

Requegt/

response

Proxied

Queued
RPC and RMI

Transaction
Connection

oriented

Synchronous



Protocol Architectural Styles

Caching %- .
Store and Pipe a HTT Ml

forwmard 4
Sessions Pub/Su P2P

Client/ Request/ Connection
server response oriented

v

Federated Proxied Synchronous



REST is all these things:

Request/Response Useful mostly for client-initiated

(Client/Server) interactions

Stateless on server Server is scalable if this property is
preserved

Cacheable Better performance

Uniform Interface Proper use of uniform GET semantics
enables caching; server control of URIs
grants resiliency

Proxied Proper support for intermediaries
enables caching



REST

NOT just a buzzword
Quite useful for some application models

1. Can the application have persistent resources?
2. Can the resources be assighed persistent URLs?

=>» If yes to both: it could be a good match



Benefits of REST + HTTP part 1

* Allows implementers to choose compartmentalization

 URL namespace can align with components

e Scalability is cheap with tiered system architecture

Request

dispatch

/issuers

[

 BLACK
BOX




More on Internal Scalability
Why are we seeing HTTP in the backend? Hypothetical:

List

memberships .
User

( preferences

IMAP
‘Si IMAP : <
simulator’ RS,
' Identity
l I I . > services
HTTP Web = Filter scripts
frontend

Message
stores

REST allows loose coupling and independently scaling services



Benefits of REST + HTTP part 2

* Extensibility along many axes is fairly clear
* “You just bought yourself a future”

* Caching, conditional features often useful

 Extended HTTP features:
* WebDAV permissions
 WebDAV collection management
* Atom feeds

 Compression or deltas
PATCH



Benefits of REST + HTTP part 3

* Implementors leverage existing software
— Web frameworks increasingly promote REST

— Scalability tools like load balancers and memcache

* Deployed servers mesh well with Web GUIs

— AJAX applications can use a REST-based standard
to retrieve data

— Data can be updated frequently while
presentation and processing instructions are not

e Goes through firewalls



Drawbacks of REST

* A uniform interface is not optimized

— Lower efficiency, because information is

transferred in a standardized form rather than just
exactly what that client needs at that second

* Not suitable for all application use cases
— E.g. notifications from server to client

* Layered systems add overhead and latency for
all new (uncached) data



Benefit or Drawback? Security

HTTP already integrates authentication and
Integrity

*Basic Auth and Digest auth
*TLS layering somewhat sketchy
*HTTP vs. HTTPS URI schemes awkward



NOT REST: RPC style

IETF sees proposals of the form: “Protocol will use

procedure calls (or messages) with bindings to
SOAP, HTTP and other transports”

* An approach that is fine for enterprise apps
* Bad for standards and interoperability because
e Different transport choices
@ RPC has minimal interaction model
e Tosses out the resource model
@ Procedure calls means tight coupling
@ Poor match to HTTP model



What the IETF knows about APIs

APls are harder to standardize than protocols
APls are tied to languages and platforms
APls are tied to implementation choices

A decent protocol can last much longer than
all but the very best APIs

So why do we keep building programming
interfaces that masquerade as protocols?



Interaction control vs. resource control

Message model gives client interaction control:

Request

C —

Response

Adding procedure calls reinforces client control:

Request+call

C pm— S

Response+results




Resource Control

* REST gives resource control to the server

GET URLA1

GET URL3




Contrast RPC Style
RPC

GET /users getUsers()

GET /newusers getUsersSince(date d)

GET /users/| getUsersMatching(string regex)
POST /newuser <body> createUser(params...)

POST /data/u2/0037 <body> updateUser(params...)

With REST: server controls naming; “newusers” and
“‘users/I” could be discoverable resources with known
syntax (basically fixed queries).

* Fixed queries can be optimized and cached

* ... but you really have to know your use cases



“But I’'m Using RPC Style Anyway”

In that case:

1.Don’t use SOAP —it’s not suited for standards
(interoperable independent implementations)

2.Can use POST with a new MIME type that
allows identification of your application

3.Disable caching, content negotiation
4.Consider carefully what role URLs will play



RMI Style may be slightly better

Remote Method Invocation, where object=resource

REST RV

GET /users GET /users/

GET /newusers POST /users/?since=d

GET /users/| POST /users/?matching=regex
POST /newuser <body> POST /users <body>

POST /data/u2/0037 <body> POST /users/lisa <body>

* Note that the server is still losing control of the interaction
« Responsibility for constructing fast and scalable queries now is in
the clients’ hands— wrong place!



Compliance & other Rules

* Application servers still have to be HTTP
compliant

* So do application clients

* Protocols need to use registries and use code
points appropriately



Server Compliance

MUST respond to the HEAD request properly (no body)
MUST handle OPTIONS <path> and OPTIONS * requests.
MUST use an error responding to unrecognized methods.
MUST handle conditional headers on requests (If-* and If)
MUST honour Content-* headers on requests.

MUST handle the Range header or fail the request.

MUST look for the Expect header and be able to do 100
Continue or fail

MUST either support persistent connections and pipelining, or
include the "close” connection option in every response.



Client Compliance

MUST include a Host header on requests

MUST support end-of-message handling: chunked transfer-
encoding, connection closing, and Content-Length.

MUST either support persistent connections or include the
"close” connection option in every request.

If caching, MUST handle Vary, Cache-Control, Expires headers.

MUST NOT automatically follow redirects for methods other
than GET and HEAD.

MUST handle 2xx responses as successes (202, 203, 205)

MUST handle the 407 Proxy Authentication Required response
and be able to use Proxy-Authenticate.



Protocol Design Compliance

e Status Codes

— Use codes the same way they’re already used to
work well with HTTP client libraries.

— Don’t define new ones unless broadly applicable
* Use the Status Code registry

— Use internal status codes for application status

e Caching must be appropriate or disabled on
every response to work with intermediaries



Security Considerations

e Security “Murphy’s Law”: If somebody can do
something bad, they eventually will.

— Thus: constrain implementers fairly carefully.
— E.g. limit allowed MIME types

* New code = new bugs

— So avoid using new code

* Misunderstanding = misuse > hacks = holes



Authentication

e Specify whether authentication via BASIC and
DIGEST are required or forbidden

* Channel bindings: HTTP authentication is not
bound to TLS encryption layer




State, sessions

e Stateless means there is no state

— You can’t release locks at the end of a “session”

* Forbid Cookies in applications that don’t need
sessions

* Require session tokens to be used securely if
application really needs sessions

— E.g. Cookies over TLS would maintain a session ID
securely and cheaply



To layer or tunnel

CONNECT (all TLS traffic)



“Fairway” cheat sheet for safe use

Full compliance to RFC2616

Follow HTTP model where possible, using:
— GET for cachable information responses

— PUT to update resources

— POST for custom processing

Let servers control URIs

Don’t use sessions, cookies; be clear about
tunneling

Require specific authentication and encryption



End notes

* Architecture is important even if opinions and
taste differ

* This presentation is intended to continue the
discussion, not to end it

* Consult with HTTP experts; e.g. ask for App
Area review



Material for readers of this
presentation

 References
* Choice quotes



References

* Architectural Styles and the Design of
Network-based Software Architectures

— Roy Fielding, 2000
e BCP56 On the Use of HTTP as a Substrate
e RFC2817 for CONNECT and TLS tunneling



At no time whatsoever do the server or client software need to know or
understand the meaning of a URI — they merely act as a conduit
through which the creator of a resource (a human naming authority) can
associate representations with the semantics identified by the URI. In
other words, there are no resources on the server; just mechanisms that
supply answers across an abstract interface defined by resources.

It may seem odd, but this is the essence of what makes the Web work
across so many different implementations. It is the nature of every
engineer to define things in terms of the characteristics of the
components that will be used to compose the finished product. The Web
doesn't work that way. The Web architecture consists of constraints on
the communication model between components, based on the role of
each component during an application action. This prevents the
components from assuming anything beyond the resource abstraction,
thus hiding the actual mechanisms on either side of the abstract
interface.

Roy Fielding, PhD. Dissertation



Wikipedia entry on SOAP

“Most uses of HTTP as a transport protocol are done in
ignorance of how the operation would be modeled in HTTP. This
is by design—similar to how different protocols sit on top of each
other in the IP stack. But this analogy is imperfect; the
application protocols used as transport protocols aren't really
transport protocols. As a result, there is no way to know if the
method used is appropriate to the operation. This makes good
analysis at the application-protocol level problematic with sub-
optimal results—for example, a POST operation is used when it
would more naturally be modeled as a GET. The REST
architecture has become a web service alternative that makes
appropriate use of HTTP's defined methods.”




