Internationalization in
Names and Other Identifiers

Goals

 The plenary’s goal is to inform the community

— Internationalization is often understood by a
relatively small number of experts, but affects a
large number of protocols

 |AB draft contains some recommendations
regarding choice of encodings

— draft-iab-idn-encoding-01.txt still in progress
* More work is needed and should continue

Why is Internationalization
Important and Timely?

Introduction

Names can have non-ASCIl characters and are embedded
In various ways:

— Hostname / IDN: café.com
(Internationalized Domain Name)
— Email: 15']2@7_‘7\|~.c0m
— URL (actually IRI): http://)\.f.:_é-l.d\.i.a
* (Internationalized Resource Identifier)
— UNC path: \\f5l 27 A F\public\file.doc

(Universal Naming Convention =
file paths common in Windows-based environments)

Users want to browse the web, etc. in their own language
— Imagine typing in a name in a script & language you don’t know

Situation Today/Soon

China uses IDNs for al

]

and has IDN TLDs (.H

— But are not in the pub

govt. sites

x

, 22 T] and .M %)

ic root today

35.2% of Taiwan domains are IDNs

13.7% of Korean domains are IDNs

Vocal demand from the Arabic-script world

ICANN is expected to start issuing IDN
country-code Top Level Domains soon

Introduction and Terminology

Some Unicode Terminology

Unicode: A set of integer code points

intherange 1—-1,114,111 (1 — Ox10FFFF)

where each code point represents (with some
exceptions) a human-meaningful visual “character”

UTF-32: Each Unicode integer code point stored using
a single 32-bit integer (so endianness matters)

UTF-16: Each Unicode integer code point encoded using
one or two 16-bit integers (so endianness matters)

UTF-8: Each Unicode integer code point encoded using
one to four 8-bit integers (so no endianness problems)

RFC 2277: IETF Policy
on Character Sets and Languages

January 1998

Protocols MUST be able
to use the UTF-8 charset

UTF-8

* Code points O0x00 — Ox7F same as ASCII

— Code points 0x00 — Ox7F encoded using
octet values 0x00 — Ox7F

— So all current 7-bit ASCII files are also valid UTF-8

e with the same meaning

— Existing files already assigning other meanings
to octet values 0x80 - OxFF (e.g. ISO 8859-1)
are not automatically compatible

* Higher code points use multi-octet sequences
— Multi-octet sequences use octet values 0x80 — OxF4

UTF-8 Multi-Octet Sequences

Single octet ASCII character First octet of Continuation octets of
(Code points 1-127) 2, 3, 4-octet sequences multi-octet sequences
OXXXXXXX 110XXXXX 10XXXXXX
1110XXXX

11110XXX

UTF-8 Multi-Octet Sequences

00000 — 0007F

00080 — O07/FF

00800 — OFFFF

10000 —

OXXXXXXX

110XXXXX

1110XXXX

11110XXX

10XXXXXX
10XXXXXX 10XXXXXX
10XXXXXX 10XXXXXX 10XXXXXX

UTF-8 Properties

No mid-string zero octets
Stateless character boundary detection

— Robust to insertions, deletions, errors, etc.

Strong heuristic detection

— E.g. Any lone octet with top bit set
signals text as not valid UTF-8

Byte-wise, sorts same order as raw Unicode

Compactness:
How many octets does it take to represent a string?

* Everyone creating their own ‘optimal’ solution
(optimal in some specific context) comes
at a high price in terms of interoperability

* Relative compactness for different encodings is not
nearly as important on today's systems as in the past

— Text is tiny compared to today’s other data:
* Images, Audio, Video
* Even international text often contains ASCIl markup
— E.g. HTML tags in otherwise international text file

Case Study:
Localization Strings in Apple’s Mail.app

» /Applications/Mail.app/Contents
/Resources/Japanese.lproj/Localizable.strings
e UTF-16: 117,624 bytes

. UTF-8: 68,693 bytes

"UNDO_MARK_READ" = ! E’ﬁ iqiﬁﬂ':-d—é "}

Punycode

e Used for Internationalized Domain Names

A method of encoding a string of Unicode integer
code points using only the following octet values:

> 0x2D
» 0x30 — 0x39
> 0x61 — Ox7A

e j.e.octet values that, if (mis)interpreted as US ASCII,
correspond to the following US ASCII characters:

» Hyphen
» Digits 0—-9
> Letters a —z

A Question of Interpretation: ASCIl or not?

A Question of Interpretation:

ASCI|

or not?

XXXXXXKXXX XXXXXXXKXXKXXX
XXXXXKKXXX XX XXXXXKXXXKXXX
KXXXXXKKXX KXXXKXXKXX
XXXXXXXXXX XXXXXXXXXXXX
XXXXXXXXXX XXXXXXXKXXXXX
XXXXXXKXXX XXXXXXKXXXX
XXXXXKKXXX X XXXXXKXXXXX
KXXXXXKKXX XXXXX XXXXKXXKKX XX
XXXXX

XXXXXXXXXKXXX

XXXXXXXXXXXXX

XXXXXXXKXXKXXX

XXXXXKXXXXKXXKXXXKXXX XXXXXKXXXKXXX

KXXXXXKKXX XXXXXXXXXKKXXX XXXXXXXXXKKXXX XXXXXXXXXKXXX
XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXX XXXXXXXXXKXXX
XXXXXXXXXX XXXXXXXXXKXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXX
XXXXXXKXXX XXXXXXXKXXXXXXKXXX XXXXXXXXXXKXXXXX XXXXXXXKXXKXXX
XXXXXXKXXX XXXXXKXXXKXXKXXXKXX
KXXXXXKKXX XXXXXXXKXKXXXXKXKXX
XXXXXXXXXX XXXXXXXXXXXX XXXXXXX
XXXXXXXXXX XXXXXXXXXXXXXX XXXXXXXK XXXXXXXXXXXXX XXXXXXXXX ~ XXXXXXXXXXXXX
XXXXXXKXXX XXXKXXXXXXXXXXX XXX XXXXXXXKXXKXXX XXXXXXXKXX ~ XXXXXXXXXXXXX
XXXXXXKXXX XXXKXXKXXXKXX XXKXXKXXXKXX XXXXXX XXXXXKXXXKXXX
XXXXXXKKXX XXXXXXXKKXKKX XXKXXXXXXKKXXX XXXX XXXXXXXXXKXXX
XXXXXXXXXXXXXXXXXXKXXXX XXXXXXXXXXXXXX XXXXXXXXXKXXX
XXXXXXXXXX XXXXXXXXXXX XXXXXXXXXKXXX XXXXXXXXXKXXX
XXXXXXKXX; XXXXXXX XXXXXXXXX XXXXXXXKXXKXXX
XXXXXXKXX; XXX XXXXXXX XXKXXXXXXKXXX
KXXXXXKKXX XXX KXXXXXXKXXXXXXKXXXXKXKXXX
XXXXXXXXXX XXXXXXXXXXXXXXXXXXKXXXXX
XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXKXXX
XXXXXXKXXX XXXXXXXKXXXXXXXKXXXXXXKXXX
XXXXXXKXXX XXXXXKXXXKXXKXXXXX
KXXXXXKKXX XXKXXXXXXKKXX

XX XXXXXXXX
XXXXXX XXKXXKXXXKXXX
XXXXXXKKXXX XXXXXXXXXKKXXX
XXXXXXXXXXXXXX XXXXXXXXXX
XXXXXXXKXXXXX XXXXXXXXXXX
XXXXXXKXXKXX XXXXXXKXXXX
XXXXXKXXXXX XXXXXXKXX XXXX
XXXXXXKKXXX
XXXXXXXXXXX
XXXXXXKXXXX
XXXXXXKXXXX
XXXXXKXXXXX XXXXX XXXXXKKXXX XXXXXKXXXXX
XXXXXXKXX XXXXXXKXX XXXXXXKKXXX XXXXXXKKXXX
XXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXKXXX
XXXXXXXXX XXXXXXXXXXX
XXXXXXKXXXX XXXXXXKXX;
XXXXXXXXX XXXXXKXXXKXX
XXXXXXKKXXX XXXXXXXXXKXXX
XXXX XXXKXXXXKXXXXXXXKXXXXXXKXX
XXXXXKXXXXKXXKXXXKXX
KXXXXXXKXXXXXXKXX
XXXX XXXXXXXXXXX XXXXXXXXXXXXXKXXX
XXXXXXXXXXX XXXXXXXKXXXXXXXXXXXXXKXX
XXXXXXKXXXX
XXXXXKXXXXX
XXXXXXKXX
XXXXXXXKXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXKXXXXXXXXXX
XXXXXXKXXXX XXXXXXXKXXXXXXXKXXXXXXKXX XXXXXXKXXXXKXXXXXXXXXXXXXXXXX
XXKXXKKXXKXXKKXXKXX:
XXXXXXXXXXX XXXXXKXXXXKXXKXXXKXXX XXXXXKKXX; X;
XXXXXXKKXXX XXXXXXXXXXXXXXXXKKXX KXKXXXXKXKXX
XXXXXXX
XXX XXXX
XXKXXKXKXXXKXXKXKXXKXXKKXXKXXKKXX
KXKXXXXXXKXXXXXXKKXX XXKXXXXX XXXXXXXKXXX
XXXXXXXXX XXXXXXXX XXXXXXXXXXX
XXXXXXXX XXXXXXXXXXX
XXXXXXXX XXXXXXKXXXX
XXXXXXXX XXXXXKXXXXX
XXKXXXX XXKXXXXX XXXXXXXKXXX
XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXKXXXX
XXXXXXXX XXXXXKXXXXX
KXXXXXXXXKXXXXKXXKXXXXKXKKXXX
XXXXXXXXXXXXXXKXKXXX
XXXXXXXXXXXXX
XXXXXX
XXXXXXXX XXXXXKXXXXX
XXKXXXXX XXXXXXXKXXX
XXXXXXXX XXXXXXXXXXX
XXXXXXXX XXXXXXX

XXXXXXXX

A Question of Interpretation: ASCIl or not?

XXXXXXXXXXXXXX X XXX
XXXXXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXXXXXX
XXXXXXXXXXXXXX XXX XX XXX XX XXX XXX XXX XXX XXX XXX XXX XX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXXXXXX
XXX XX XXXX
XXX XXX XX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX XX XXX XX XXX XXX XX XXX XXX XXXX
XXX XXX XXX XXXXX X XXX

XXXXXXXXXX

XXXXXXXXXX XX
XXXXXXXXXX XXXXXXXXX XXXXXXXXXXXX
XXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX
XXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXX
XXXXXXXXXX XXXXXXXXXXX XXXXXXXXXX
XXXXXXXXXX X XXXXXXXXXXX XXXXXXXXXX
XXXXXXXXXX XXXXX XXXXXXXXX XX XXXXXXXXXX
XXXXXXXXXX XXXXXXXXX XXXXXXXXXXX XXXXX XXXXXXXX
XXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXX
XXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXX
XXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXX
XXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXX
XXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXX
XXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX

Today’s Text Chaos

Technical Details
+ Stackable ¢ Easily stacks with the Apple Mac mini and Airport Extreme or additional Iomega MiniMax hard drives
s Secure ¢ Micro security slot designed to allow drive to be anchored to a desk
¢ Convenient ¢ FireWire 1394a 3-port repeater/hub

Technical Details
* Stackable ¢ Easily stacks with the A
* Secure ¢ Micro security slot designe
. Convenienté: FireWire 1394a 3-port

IETF 76 Technical Plenary 19

Today’s Text Chaos

" @ safari File Edit [{JE History Bookmarks Develop Window Help D f I
Hide Bookmarks Bar 38 J e au t
Hide Status Bar 8/

e o —

Customize Toolbar...

Reload Page %R

Unicode (UTF-8)

e Western (ISO Latin 1)
Western (Mac OS Roman)
| TextEncoding » [ZLEEWE
BT T —

Unicode (UTF-8)

Western (ISO Latin 1)
Western (Mac OS Roman)

Japanese (Shift JIS)
Japanese (ISO 2022-JP)
Japanese (EUC)

Japanese (Shift JIS X0213)

Traditional Chinese (Big 5)
Traditional Chinese (Big 5 HKSCS)
Traditional Chinese (Windows, DOS)

Korean (ISO 2022-KR)
Korean (Mac OS)
Korean (Windows, DOS)

Arabic (ISO 8859-6)
Arabic (Windows)

Hebrew (ISO 8859-8)
Hebrew (Windows)

Greek (ISO 8859-7)
Greek (Windows)

Cyrillic (IS0 8859-5)
Cyrillic (Mac 0S)
Cyrillic (KOI8-R)
Cyrillic (Windows)
Ukrainian (KOI8-U)

Thai (Windows, DOS)

Simplified Chinese (GB 2312)
Simplified Chinese (HZ GB 2312)
Chinese (GB 18030)

Central European (ISO Latin 2)
Central European (Mac OS)
Central European (Windows Latin 2)

Vietnamese (Windows)

Turkish (ISO Latin 5)
Turkish (Windows Latin 5)

Central European (ISO Latin 4)
Baltic Rim (Windows)

IETF 76 Technical Plenary

Japanese (Shift JIS)
Japanese (ISO 2022-JP)
Japanese (EUC)

Japanese (Shift JIS X0213)

Traditional Chinese (Big 5)
Traditional Chinese (Big 5 HKSCS)
Traditional Chinese (Windows, DOS)

Korean (ISO 2022-KR)
Korean (Mac OS)
Korean (Windows, DOS)

Arabic (ISO 8859-6)
Arabic (Windows)

Hehrew (ISO KRR859-8)

20

IDNs in Other Identifiers

There can be many ways to get to the same file. For example...
Using HTTP:

1. <Thttp://dthaler/Public/test.htm >

2. http://xn--dthler-rxe/Public/test.htm

3. http://dth%CE%B1ler/Public/test.htm

4. http://dthαler/Public/test.htm

Using CIFS/SMB (fi em protocols using UNC):

< Ele://dthaler/PubIic/test.@

. file://xn-=dthler-rxe/Public/test.htm
file://dth%CE%B1ler/Public/test.htm

1

2

3.

4. file://d :ler/Public/test.htm
5C SSdthaler\Puinc\test.htm >

6. \\xn--dthler-rxe\Public\test.htm

IETF 76 Technical Plenary

Plenary Announcement
to ietf-announce@ietf.org

smooth and interoperable
functioning®#8232; of
the Internet depends on
text strings 
being interpreted 1n the
same way  by all
systems connected to 1it.

How Many Layers of Encoding?

e How do we encode:
A domain name...
in an email address...
in a “mailto” URL...
in a web page?

* Do we use:

— Punycode (“xn--...”) encoding for the domain name?

— Email Quoted-Printable (“=XX") encoding?

— URL percent (“%XX”) escaping?

— HTML ampersand (“&#xxxx;”) codes?

e All of the above?

IDNs in Email

Two test emails

From: user@cheshir&stuartcheshire.org

In each email, address appears in two places:
— in “From” line

— and in body text

First email encoded IDN using Punycode:

-<xn--chshr-38d3be >
Second email encoded IDN using direct UTF-8

Punycode Email

/ Header
Subject: Punycode

From: user@xn--chshr-38d3be.stuartcheshire.org

The "From" address for this email was
"user@xn--chshr-38d3be.stuartcheshire.org"
(1.e. using punycode encoding)

\ Body

UTF-8 Email

Subject: UTF-8
From: user@cheshire.stuartcheshire.org

The "From" address for this email was
"user@cheshire. stuartcheshire.org"
(1.e. using direct UTF-8 encoding)

Punycode Email: xn--chshr-38d3be

Client
Gmail / IE

Gmail / Firefox 3

Apple Mail

Penelope

Mulberry 4.08
Thunderbird 2.0.0.16
Eudora 6 on Mac OS X

From (Punycode)
xn--chshr-38d3be

xn--chshr-38d3be
xn--chshr-38d3be
xn--chshr-38d3be
xn--chshr-38d3be
xn--chshr-38d3be
xn--chshr-38d3be

Lotus Notes 7.03 & 8.01 xn--chshr-38d3be

Outlook 2007
Outlook E-Mail (WM6)

(chsshwa)

xn--chshr-38d3be

Outlook Web Access / IE xn--chshr-38d3be

Body (Punycode)
xn--chshr-38d3be

Xn--chshr-38d3be
xn--chshr-38d3be
xn--chshr-38d3be
xn--chshr-38d3be
Xn--chshr-38d3be
Xxn--chshr-38d3be
xn--chshr-38d3be
xn--chshr-38d3be
Xn--chshr-38d3be
Xn--chshr-38d3be

UTF-8 Email: cheshire

Client ody (MTF-8)
Gmail / IE xn--chshr-38d3be cheshire
Gmail / Firefox 3 xn--chshr-38d3be cheshire
Apple Mail cheshire cheshire
Penelope cheshire cheshire
Mulberry 4.08 cheshire cheshire
Thunderbird 2.0.0.16 cheshire cheshire
Eudora 6 on Mac OS X~ chiushl riu cheshire
Lotus Notes 7.03 & 884_chiushi riu cheshire
Outlook 2007 cheshire

Outlook E-Mail (WM6 ch??sh??r?? cheshire

Outlook Web Access / [ls.ch??sh??r??

cheshire

More Terminology in this Presentation

Mapping: converting one string to another
“equivalent” string

— “CONTOSO.com” = “contoso.com”

Matching: checking two strings for equivalence
— “CONTOSO.com” ~ “contoso.COM”

— “mohringen.de” # “moehringen.de”

Sorting: determining which string comes first

— “contoso.com” < “Microsoft.com”

Encoding: same string can be encoded in
different ways

— including issues of combining characters: évse +°

IDN Identifier Space

* IDNA-valid string:
no invalid characters, legal length, etc.

 U-label: a Unicode IDNA-valid string

 A-label: “xn--” followed by
Punycode-encoded IDNA-valid string

More Variety Brings More Ambiguity

Computer Systems: 2 (binary)
Telephone Numbers: 10 (0-9)
ASCIl Domain Names: 37 (A-Z, 0-9, -)

International Domain Names: Tens of thousands

Matching

Confusable Strings (1/4)

* Two strings that are easily confused by a
human

ETHIOPIA.com H\ETHIOPIA}.COH}\ More confusion
|

Greek alphabet! Plain “ASCIl” confusion

* Lower-casing will reveal the ETHIOPIA issue
e etnuopla is fairly distinctive

— current trend is to deprecate upper-case
and other mapping-required forms in IRIs etc.

— IDNA200S8 treats these characters as DISALLOWED

Confusable Strings (2/4)

* Another example:

jessica.py <> jessica.py

.ru = Russia
.py = Paraguay Cyrillic alphabet

* “jessica” actually uses Cyrillic characters from
two separate languages

— A registry may restrict registrations
to only characters in their language

e Other examples exist without mixing languages
* epoxy.py <> epoxy.py

Confusable Strings (3/4)

* People see what they expect to see
— Russian restaurant: “pectopaH”

— Non-Russians might read “pectopah”

* Given sufficiently creative use of fonts forced
by style sheets etc., confusion can be easy

It Depends on What You Know
—and Expect

Is the second character “A”? If you were
not familiar with Latin script, or didn’t
know what to expect, would you be sure?
Could it be a star of some sort? Are you
sure that the first character is an ASCII dot
(the DNS cares — a lot)?

Are these two strings identical?
Are you sure? Would you be
sure if you didn’t know Latin
script or the organization
involved?

Confusable Strings (4/4)

* Other kinds of “equivalence” —
equality in some contexts

e MAE| and FA[EX
Two code points, same concept

° :\.?.Jj.km.j\ and :\..{JjMJ\

Two code points for same letter (more or less)

Are the Following Equivalent?

Arabic-Indic v YY Y L e TV AN
Eastern Arabic-Indic +«y Y ¥ ¥ 0 7 v A 9
Chinese Suzhou | 1Y 8§ +-==x
European (ASCII) 01 2345¢673829
Devanagari (Hindi) 0 ¢RI FUL VWLl
Tibetan VECE-S e A N

Tamil 0%H2Mm&(H dn 6l S Fo

“Suspect” Names

Potential for phishing attacks

— but could be innocent or accidental

Names with scripts not used by the user’s locale
Names with mixed scripts (e.g. Cyrillic + Latin)

Ul might want to warn the user when displaying
any of these from an untrusted source

— Some browsers display A-labels (“xn--...”) in address
bar, but that confuses humans

Universal Confusable String

* Few user systems have all possible characters
and display fonts for them installed.

 |f character cannot be represented locally, a

six-character string might appear as
— P PP 7?7?77 or

* This should be a warning
(but remember what users do when they see

a warning they don’t understand)

Mapping

Why Mapping?

* |nstead of intelligent matching algorithm:
— Map each string to a defined canonical form

— Simple test if canonical forms are bitwise identical

— Does not permit “close enough” or other fuzzy
matching

e Conversion of one visual form to another
that is more locally understandable

— E.g. Traditional Chinese (HF|EX])
to Simplified (H | &)

Mapping

Mapping inherently loses information
— Case conversion, half/full width, NFC/NFKC/etc

Upper/lower casing differs by language
— Latin alphabet: | & i

— Turkish: | & | | &
tolower(‘I’) = ??7?

toupper(‘i’) = ???

tolower(toupper(1)) # ‘I

Turks aren’t too happy about this...

Mapping

* Summary:
— Never roll your own mapping

— Correct mapping for user depends on language
context, which we often don’t know

Encodings
draft-iab-idn-encoding-01.txt

(Over) Simplified Architecture

Host

Problem #1: DNS isn’t the
only name resolution protocol
Different protocols use
different encodings today

DNS Resolver Library

Problem #2: The public
Internet name space isn’t
the only name space

Different name spaces use
different encodings today

Realistic Network Architecture

Host

Application

Implementation-
specific encoding
(e.g., UTF-8 or UTF-16)

Name Resolution Library

£ £ [y I T O

Enterprise
network

Local LAN

Internet

Other Name Resolution Protocols

Many defined to use the same syntax

— Hosts file, DNS, mDNS, NetBlIOS-over-TCP, etc.

Name resolution library decides what protocols to try
in what order

— Apps cannot tell from the name what protocols
will be used for resolution

— Different libraries may use different order
and hence find different name targets

Different protocols specify use of different encodings

— Apps cannot tell what encodings will be needed
for resolution

What’s a Legal Name?

* In 1985, RFC 952 defined the format of the
hosts file:

— “Internet host/net/gateway/domain name”
contains ASCII letters, digits, hyphens (LDH)

* |n 1989, RFC 1035 defined DNS:
— “Preferred name syntax”: LDH
— But does “preferred” mean MAY/SHOULD/MUST?

Legal DNS Names

* In 1997, RFC 2181 clarified:

— Any binary string whatever can be used as the
label of any resource record

— Any binary string can serve as the value of any
record that includes a domain name

— Applications can have restrictions imposed on
what particular values are acceptable in their
environment

* Same year:
— |ETF policy on character sets and languages...

IETF Policy on Character Sets
and Languages (RFC 2277)

* |t says:
— Protocols MUST be able to use the UTF-8 charset

— Protocols MAY specify, in addition, how to use other
charsets or other character encoding schemes

— Using a default other than UTF-8 is acceptable

* Silent on different forms within UTF-8 (e.g. case,
encoding of combining characters, sort order)

— Two Unicode strings often cannot be compared to yield
results users expect without additional processing

 Per RFC 2181, DNS complies

Use of Different Encodings in DNS

e Starting that year (1997), some systems began
using UTF-8 in DNS in private name spaces

— Private name space here means names are not
resolvable from outside the specific network
e About five years later, IDNA development

(including Punycode) began for use in the
public DNS name space

Length Issues

DNS names have

— 63 octets per label

— 255 octets per name (not counting zero at the end)
Most application APIs use NULL-terminated strings

Non-ASCII characters use a variable number of octets
in UTF-8, UTF-16 and Punycode

— 256 UTF-16 octets # 256 UTF-8 octets # 256 A-label octets

Some names can be represented (within length)
in Punycode A-labels but not in UTF-8

Some names can be represented (within length)
in UTF-8 but not in Punycode A-labels

Let’s Recap Where We Are...

* Multiple encodings of same Unicode characters:
— U-labels: Sl Jles
— A-labels: xn--mgbhO0f.xn--kgbechtv

* Different encodings used:
— By different protocols

— On different networks with DNS
* Punycode A-labels used on Internet, UTF-8 in intranets

— By different applications
* Results:
— Failure — or worse — launching one app from another

— Competitor switching incentives, and poor user experience
when one app works and competitor doesn’t

Example “IDN-aware” app:
Browser picks encoding based on intranet vs. Internet

€ New Tab - Windows Internet Explorer

U v ‘é: http:// ;s

Slas)
Intranet name? I Internet name??

PrOblem 1: s (UTF-16) Xn--mgbhOfb PrObIem 2:
/ \ Local name

Host/app B.uses Name Resolution API
A-labels in intranet

resolution
uses UTF-8

Jlzsl.example.com (UTF-8)

55

IETF 76 Technical Plenary

Inconsistent Experience Across Applications
IDN Aware App Non-IDN Aware App

=

Document Workspace name:

D:J Enter the URL or path to a media file on the Internet, ,Documentl
your computer, or your network that you want to play. Location for new v Jorkspa ce:

http:// izl Lo =

Open: http://,Lis].JUs -

http:// e e http:// e dee

xn--mgbhO0fb.xn--kgbechtv (UTF-16) L=sl. Js

Name Resolution

Name Resolution

(UTF-8) jlasl Ju

xn--mgbh0fb.xn--kgbechtv Phishing attacks

possible

e

P |—— IETF 76 Technical Plenary it U

Other IDN-Aware Apps

Lack consistency, causing non-deterministic experience
[New RsS Feed I =5

Oﬂ Enter the URL or path to a media file on the Internet, Enter the location of the RSS feed you want to add to Outlook:
your computer, or your network that you want to play. 1

http:// s JUio |
Open: http://,Lis].Jio v Example: http://www.example.com/feed/main.xml
http:// e e http:// e e
xn--mghbQfh:xr{JRgLEGNt xn--mghh0fb.x(iKetieghtv
ame Reso 0 ame Resa O
skl e (UTF-8) xn--mgbh0fb.xn--kgbechtv St Jee (UTF-8)

xn--mgbhOfbixn--kgbechtv

chable
Unreachable

P - IETF 76 Technical Plenary I U 57

Basic Principle

 Conversion to A-labels, UTF-8, or whatever
other encoding, can be done only by an entity
that knows which protocol and name space
will be used

Hard Issues 1 of 2

* Client has to guess or learn what encoding a
{HTTP,DNS,SMTP.,...} server expects for an
identifier

* Names appear inside many other types of
identifiers, e.g. email address, URLs, UNC paths,
network access identifiers (NAIs)

— Each identifier type has its own encoding conventions

— Today, apps that extract host names need to convert
encodings

Hard Issues 2 of 2

e Use of a single encoding is the easy part
— Sufficient only if the only intent is to display

— Comparison, matching, lookup, sorting, etc., all require
more work.

— Just as RFC 952 defined an ASCII subset for “hostname”
identifiers, we need to define Unicode subsets for other
types of identifiers.

* Optimal subset for one protocol may not be optimal for
another.

* |nterpretation and display of some strings may differ by
operating systems — usually a bug, but sometimes no
agreement as to which variation is the bug.

Conclusions

* Smooth and interoperable functioning
of the Internet depends on text strings
being interpreted in the same way
by all systems connected to it

* The IETF has recognized this since RFC 20
specified ASCII for use in interchange in 1969 —
the suggestions in this presentation extend

and update that understanding as well as
the understanding in RFCs 2277 and 5198

Conclusions

To avoid confusion and ambiguity,

it is not enough merely to support UTF-8
as one of the text encoding options

— Text in protocols on the wire should be in UTF-8
and only in UTF-8

For user-visible text in protocols:
— |f you don’t use UTF-8, why not?

For protocol identifiers not seen by users:

— If you do allow the full Unicode character range, why?

