What is this all about?

- **Problem Statement:**
 - RAO security concerns & solutions not documented well
 - Some feel careful router implementation & careful deployment address the RAO security concerns
 - Most feel concerns are far from addressed
 - Practical questions remain unanswered:
 - Should IETF discourage use of RAO-based protocols in The Internet?
 - Should IETF discourage use of RAO-based protocol in all environments?
 - Should an operator block e2e RAO packets to protect itself?

RAO = IPv4 and IPv6 Router Alert Option
What is this all about?

- **Objective**: produce a BCP documenting:
 - The concerns
 - Recommendations on environments were RAO should not be used
 - Recommendations on environments were RAO may be used
 - Recommendations on Protection approaches for Service Providers
 - Guidelines for RAO implementation on routers

RAO = IPv4 and IPv6 Router Alert Option
What is this NOT about?

- This I-D does not discuss potential changes to the definition, or re-definition, of RAO
 - This is investigated in draft-narayanan-rtg-router-alert-extensions

- This I-D discusses situation based on current RAO definition and implementations
Changes 02→03

- Generalized the earlier recommendation that “new” protocols don’t use RAO end-to-end into a recommendation that applies both to “old” and “new” protocol

REPLACED:

- “it is RECOMMENDED that new end to end applications or protocols be developed without using IP Router Alert”

BY:

- “it is RECOMMENDED that applications and protocols not be deployed with a dependency on processing of the Router Alert option (as currently specified) across independent administrative domains in the Internet.”

Based on list discussion with Jukka
Use of Router Alert End-to-End in the Internet (Peer Model)

Figure 1: Use of Router Alert End-to-End in the Open Internet (Router Alert in Peer Model)

(*) closer examination of Router Alert option datagrams

<--> flow of Router Alert option datagrams
Changes 02→03

- Detailed several Models of Controlled Environments where “an application relying on exchange and handling of RAO packets MAY be safely deployed”:
 - Within an Administrative Domain
 - In Water-tight Overlay
 - In Water-tight Overlay at Two Levels
 - In Leak-Controlled Overlay Model
Use of Router Alert Within an Administrative Domain

(*) closer examination of Router Alert option datagrams
<==> flow of Router Alert option datagrams
TT Tunneling of Router Alert option datagrams

Figure 3: Use of Router Alert Within an Administrative Domain
Use of Router Alert In Water-Tight Overlay Model

(*) closer examination of Router Alert option datagrams
<==> flow of Router Alert option datagrams
TT Tunneling of Router Alert option datagrams

Figure 4: Use of Router Alert In Water-tight Overlay
Use of Router Alert In Water-Tight Overlay At Two Levels

(*) closer examination of Router Alert option datagrams
<==> flow of Router Alert option datagrams
TT Tunneling of Router Alert option datagrams

Figure 5: Use of Router Alert In Water-tight Overlay at Two Levels
Changes 02→03

- Split the “Introduction” section into:
 - “Introduction” section
 - “Security Concerns of Router Alert” section

- Added a paragraph on IPv6 hop-by-hop options: (*)
 - Similar concerns apply
 - Outside the scope of this document
 - Reference to [I-D.krishnan-ipv6-hopbyhop]

- Added a paragraph on IPv4 options: (*)
 - Similar concerns apply
 - Outside the scope of this document

- Expanded discussion on use of Value field based on nsis-ntlp

(*) Based on discussion with Suresh & Jukka
Next Steps

- Proposal to turn this document in WG document? (*)

(*) Assuming IntArea WG is formed
The Fundamental RAO Concern

- Basic RAO semantic → alert router to more closely examine the contents of IP packet

- No convenient universal mechanism to accurately and reliably distinguish between “RAO packets of interest” and “unwanted RAO packets”.

→ Potential RAO-based DOS attack
History

- Work started in Routing Area
- Recently moved to Internet-Area
IP Router Alert Documents

- *draft-rahman-rtg-router-alert-considerations-03*
 - Based on current RAO definition
 - BCP Track
 - Concerns & Recommendations

- *draft-narayanan-rtg-router-alert-extensions-00*
 - Explores enhanced RAO definition
Changes 01→02

- Adjusted structure for clarity and to provide clearer answers to the key RAO related questions:
 - we recommend new protos don't use RAO
 - it is OK for existing protos to use RAO in anumber of controlled environments
 - there are better ways for an SP to protect themselves than dropping RAO packets
 - router implementations should think about protection against RAO DOS

- In accordance with RTG WG feedback, remove the details on the various mechanisms that could be implemented by a router for RAO protection (those are implementation specific) and replace with generic recommendation (section 4)
Use of Router Alert Within an Administrative Domain

(*) closer examination of Router Alert option datagrams

<==> flow of Router Alert option datagrams

FW Firewall

Figure 2: Use of Router Alert Within an Administrative Domain
Use of Router Alert In Leak-Controlled Overlay

(*) closer examination of Router Alert option datagrams
<==> flow of Router Alert option datagrams
TT Tunneling of Router Alert option datagrams

Figure 6: Use of Router Alert In Leak-Controlled Overlay
it is RECOMMENDED that a SP implements strong protection against RAO attack

it is RECOMMENDED that an SP uses mechanisms that avoid dropping of e2e RAO

SP may:

- Turn-off RAO punting (if does not depend on RAO)
- Use selective filtering and rate-limiting (e.g. to protect RSVP-TE)
- “Tunnel RAO” via mechanisms such as discussed in [I-D.dasmith-mpls-ip-options]
- As the very last resort, drop RAO packet
It is RECOMMENDED that RAO implementations include protection mechanisms against RAO-based DOS attacks appropriate for their targeted environments:

- e.g. ability on an edge router to “tunnel” RAO as discussed in [I-D.dasmith-mpls-ip-options]
- e.g. new implementations may include selective (possibly dynamic) filtering and rate-limiting of RAO packets

A router implementation SHOULD forward within the “fast path” a packet carrying RAO containing a payload that is not of interest.