Power State Monitoring and Energy Consumption Monitoring

draft-quittek-power-monitoring-requirements-00

J. Quittek, R. Winter, T. Dietz, B. Claise, M. Chandramouli

Power Management

- we need means for power management
 - rising energy cost
 - increased awareness of ecological impact of running IT and NW equipment
- basic objective
 - run networks and attached equipment with minimal amount of energy
- use power saving modes
 - reduced power, stand-by, power off
- define policies for dealing with trade trade-offs
 - energy efficiency vs. service level objectives

Essential First Step: Power Monitoring

- monitoring does not directly save energy
 - it rather consumes additional energy
- however, it is needed for
 - investigating power saving potential
 - deriving, implementing, testing and evaluating energy saving policies and measures
 - input to control loop for dynamic power management
 - accounting the total power consumption of a network element, a network, a service, ...

IETF 76 OPSAWG

General Monitoring Requirements

- target devices
 - all components of a communication network: routers, switches, middleboxes, hosts, etc.
- granularity
 - also components of devices: CPU, ASICS, fans, hard drives, line cards, etc.
 - higher granularity for power state monitoring than for actual energy consumption monitoring
 - cost of instrumentation
- remote and aggregated monitoring
 - single device may provide information for several others
 - examples: PoE switch, smart meter

Required Information: Power State

- pull-based power state monitoring
 - current state
 - full power, low power, standby, hibernating, off
 - cause for the last transition
 - time to transit from one stage to another
 - total time spent in each state
 - duration of the last period spent in each state
 - number of transitions to each state
 - current power source
 - •
- notifications on power state changes

Required Info: Energy Consumption

- energy consumption monitoring
 - current real power (energy consumption rate) averaged over a short time interval
 - peak values
 - total energy consumption
 - energy consumption since the last report or for the last configured time interval
 - total energy consumption per power state
 - energy consumption per power state since the last report ...
- pull AND push model reporting may be required

Battery Monitoring

- current charge of battery
- age of battery
- state of battery (e.g. being re-charged)
- last usage of battery
- maximum energy provided by the battery

•

Meta Information

- accuracy of meter
- AC or DC
- power measurement interval
- real or apparent power
- reporting interval

•

Monitoring Models

- pull model
 - obviously needed
- push model: notifications
 - notifications for power state changes
 - notifications for exceeding power thresholds
 - notifications on battery status
- push model: continuous reporting
 - smart meter

Existing Standards

- RFC 4268 (Entity State MIB)
 - standby status (hot, cold, providing service)
- RFC 3433 (Entity Sensor MIB)
 - generic, can be used for power monitoring
- RFC 3621 (Power Ethernet MIB)
 - good information on small devices powered with PoE
 - accessible at power sourcing equipment
- RFC 1628 (UPS MIB)
 - good information for UPS protected devices
- DMTF power state management profile
 - targeted at hosts, using Common Information Model (CIM)
 - rather device profile than actual monitoring
- IEEE 1621 "Power Control User Interfaces"
 - support from the editor for the IETF activity
- ETSI ES 202 336
 - Environmental Engineering (EE): Power and cooling system control and monitoring guidance
- and much more ... further input is appreciated

Suggested Actions

- define Power MIB module as extension of existing RFCs
 - we have standards for collecting basic information on power state and source
 - we don't have them for statistics and accumulated values
- select a protocol for push-based reporting of time series of energy measurements
 - candidates: SYSLOG, IPFIX, ...
- define structured data / information elements for transmitting energy measurement data
- still the first step: collect further input
 - on requirements
 - on existing standards and ongoing standardization
- further contributors are very welcome!

11

Questions

 Shall we include smart meters at home in our scope?

- Shouldn't we start caring about other components of energy management?
 - configuration, scheduling, control, ...

IETF 76 OPSAWG