Improving Routing Scalability with Name-Oriented Sockets

Christian Vogt Ericsson Research

IRTF Routing research group meeting. November 2009

2 Types of Identifier-Locator Separation

- main difference is application transparency
- growing deployment for type 2, not for type 1

Transparency Implies Deployment Hurdle

application transparency does <u>not</u> aid deployment as commonly believed

Name-Oriented Sockets

- applications use DNS names bilaterally
- IP address management at IP layer
- standard IP packets

New Interface For Applications

- Listen method prepare for incoming session
 service handle = Listen (source name, destination name, local port, transport)
- Open method initiate outgoing session
 session handle = Open (source name, destination name, remote port, transport)
- Accept method receive incoming session
 (source name, destination name, session handle) = Accept (handle)
- Write method send data
 Write (session handle, data)
- Read method receive data data = Read (session handle)
- Close method close session
 Close (session handle)

Other Components

- initial name exchange
- address updates
- backwards compatibility
- hosts without registered DNS name
- security

Initial Name Exchange

Initial Name Exchange

Address Updates

Backwards Compatibility

two types

- 1. legacy local application
 - old interface alongside new interface
 - remote peer sees legacy host
- 2. legacy remote peer
 - unilaterally name-oriented
 - address-derived name for peer

Backwards Compatibility

Security

- initial name exchange: DNS lookup by peer
 - same security as for initiating host
 - security strength depends on DNSSEC

- address update: return routability end to end
 - retains security of non-mobile Internet

- dynamic DNS update: crypto authentication
 - provisioned by hosting provider

New Dependencies On the DNS

- name-oriented stack will increase DNS load
 - more lookups
 - more dynamic updates
- scalability and convergence perhaps problematic
 - load increase never tested
 - low time-to-live values often not supported
- analysis results so far promising
 - load increase affects only lowest-level servers
 - missing time-to-live support fixable

Conclusion

- name-oriented sockets improve routing scalability
 - enable multi-homing and mobility
 - simplify renumbering
- good deployment prerequisites
 - backwards compatibility
 - advantages for application developers
 - incentives to change operating systems
 - no new infrastructure or administrative procedures
 - no dependency between stakeholders
- early prototype at Ericsson

