An Aggregation-Based Evolutionary Path towards Global Routing Scalability

Team [APT → Evolution]

Presented by Lixia Zhang RRG @ IETF76

The problem and the solution

- Routing tables continue to grow
 - Multihoming, traffic engineering, (lately) "security"
 - Benefits to those who deaggregate; costs to those who carry full table
- Basic approach to scalable routing:

route aggregation

Aggregation: what it is

- Aggregation: use a shorter prefix to cover multiple longer prefixes of the same block
 - + shrink FIB and/or RIB
 - + reduce churn
- Why Aggregation: The farther away you are from a prefix, the less details you need
 - may introduce stretch, just like any other hierarchy structures
 - e.g. rouing over autonomous systems introduces stretch compared to globally flat topology

Why we haven't had a solution deployed

- Internet is big and diverse

 routing scalability problem is not universal
 - edge sites vs. ISPs; new core routers vs. old PE routers
 - Affordability varies: Some feel that this is a serious long-term problem; others feel it's not an issue, just pay
- Internet has no boss → no universal buy-in, no flag day/year/decade

So,

- Requirement for any solution:
 - Can be deployed by individual parties
 - needs clearly identifiable returns
- Is there anything one can do to reduce local RIB/ FIB without relying on others' good will?
 - Yes
- Will this eventuallt lead us towards the global routing scalability?
 - Yes, starting from local route aggregation

Present vs. Future

- Applications, requirements, and technology have all been changing over time
- History does not show that we are particularly good in predicting futures with any accuracy
 - We know better about specifics of current time
 - See less clearly for N years down the road
- → Relatively more confident about today's problems, feasible solutions
 - Identify the landmark for future directions

What is an evolution path

Each stage

- focuses on an immediate problem that warrants a change.
- offers a solution with reasonable deployment cost considering the problem.
- can be taken by individual ASes as/when they see fit.
- converging towards desired direction
- Notes:
 - (1) Some networks may not adopt any solutions
 - (2) Different networks may be in different stages, therefore they must be able to co-exist.

Evolutionary Path based on Aggregation

- Basic idea: Apply aggregation with increasing scopes, from local to global
- Evolutionary path
 - local router → FIB aggregation, no stretch
 - Intra-AS virtual aggregation → further reduce FIB,
 but with stretch
 - Also opens possibility to reduce RIBs on non-ARP routers, open issues remain to be resolved
 - Inter-AS virtual aggregation using existing BGP sessions → reduce stretch
 - APRs peer with neighboring ASBRs over multi-hop
 BGP sessions → reduce RIB size of non-APR routers

Defining Incremental Deployment

- What is "Incremental deployment"?
- So far: Co-existence of the new and old worlds.
 - An ISP running new architecture can inter-operate with legacy ISPs.
 - But the cost associated with new deployment can be high, while the immediate gain can be low.
 - Routing table reduction may not come until most of the world have converted (e.g. LISP, APT)

Real definition of incremental deployability

- In addition to Co-existence of the new and old worlds
- must also provide enough incentives at each stage.
 - Future state is determined by economic forces.
- Architecture/protocol designs need to
 - Steer the system towards promising direction;
 aggregation in our work
 - facilitate future changes

The Goal of This Discussion

- Show an example of an evolutionary path towards scaling the global routing architecture
 - illustrate feasibility of convergence towards scalable routing
- The particular path mentioned in the example are not meant as a fixed prediction
 - Solutions for today: feel confident
 - Solutions further out: less sure
- The direction: bring FIB, RIB and update volume under control
 - Show that the first step can move toward a global optimum without getting stuck in local minimum

FIB Size Reduction without Stretch

- FIB aggregation by *individual router*
 - If two numerically aggregatable prefixes share the same next-hop, aggregate them into one.
 - Almost no impact on packet forwarding.
 - No impact on routing.
 - Compatible with future solutions.
- Gain: up to 70% reduction of FIB size, no stretch.
- Cost: CPU cycles, but controllable
- Deployment: a software upgrade at local router.

FIB Size Reduction with Stretch

- Intra-AS Virtual Aggregation (Francis et. al.)
- Aggregate most prefixes into virtual prefixes; leave out popular prefixes
 - Ideally most traffic load does not have stretch
- Deployable by individual ISP, no impact on other networks
- Bring immediate FIB reduction
 - Cost: path stretch; additional complexity
- Preliminary evaluation: the FIB size can be reduced by a factor of 10 or more with minimal stretch

RIB Size Reduction for Non-APR Routers

- Current VA proposals did not touch RIB to avoid impact on neighbor ASes
 - Need to provide full BGP table to downstream neighbors who want it
 - FIB is a local business
- But it's possible to reduce RIB size of non-APR routers.
 - APRs must hold the full table anyway
 - Let APRs peer with neighbor ASes' border routers via multi-hop eBGP sessions
 - PLEASE DON'T JUMP UP: yes some issues need to be nailed out here, but nothing seems fatal.

Inter-AS Virtual Aggregation (Francis et. al.)

- If neighboring ASes deployed VA: exchange mapping information
 - exit router address of more specific prefixes under virtual prefixes.
- Deployable by neighboring ISPs
- No impact upon operations of other networks
- Can reduce path stretch

RIB and Update Reduction for APRs

- The crystal ball looks cloudier when one attempts to look into further future
- Possibilities:
 - Routers further away from destination ASes may ignore more specific prefixes
 - Reduced RIB, reduced updates

How Do We Know We Are Heading to the Right Direction?

- Scale Routing through aggregation
- Enable aggregation with increasing scopes.
- We give decisions to individual ASes
 - Thinking about all the changes over last 10 years: which one was a joint action by multiple ASes?

Step Up A Level

- There will <u>not</u> be a single global routing hierarchy/a mapping table as many people have envisioned (including ourselves)
- Individual ISPs are dealing with their own routing table size problem.
 - There have been attempts to voluntarily stop routing propagation.
 - With FA and VA: one can send as many routes as one wants to neighbors, the receiving AS will aggregate as much as it needs.

What about "architecture"

- The goal: scalable routing architecture
- From dictionary: building structures; layout, formation, arrangement
- Good routing architecture
 - Fullfill the function needed today
 - Put FIB, RIB, updates under control
 - Must be incrementally deployable!
 - Stay flexible for extension to meet the need for tomorrow

Relation with Other Proposed Solutions

- Our proposal complement those solutions starting from "edge" (more "clean slate")
- Paul: if/when LISP (ILNP) succeeds one day, we no longer need all this stuff (FIB, RIB reduction)
 - VA provide solutions to meet individual ASes' problems today while waiting for longer term solutions to rollout.
- Impose no changes to current practice at edges/ applications while ISPs evolve their own routing structure
 - New developments such as MPTCP, HIP, etc. proceed in parallel.

Thank You

Questions? Comments?