MPLS Transport Framework on Composite Link

draft-so-yong-mpls-ctg-framework-01.txt

Ning So
Andrew Malis
Dave McDysan
Lucy Yong
Fredric Jounay
Yuji Kamite

ning.so@verizonbusiness.com
andrew.g.malis@verizon.com
dave.mcdysan@verizon.com
lucyyong@huawei.com
frederic.jounay@orange-ftgroup.com
y.kamite@ntt.com
Differences From Previous Work

Split the framework and Requirement draft into two drafts based on the group feedback in 75th IETF

- Requirement – composite link motivation/problem statement, and transport and operation requirements
- Framework – architecture of composite link and transport method, and applicability
CTG Framework (Revised)

- Composite link consists a set of component links that have the same end points.
- Component links may have different TE parameters.
- Composite link can carry LSP traffic and control plane packets.
- LSP traffic flows and CP packets first is mapped into a connection, then connections are mapped to a component link.
- Traffic volume measurement on a per connection basis.
 - enables bandwidth optimization over composite link.
 - makes the measurement scalable and manageable.
- Traffic mapping and connection mapping algorithm takes traffic and connection parameters into account.

Interior Functions: Data/forwarding, determination of component link. Management Control of these functions important for interoperability.

Exterior Functions: Routing and Signaling.
Interior Functions

- Implement locally on LSRs that are connected via a composite link directly
 - Mapping of traffic flows to connections
 - Mapping of connections to component links
 - Traffic volume measurement on a per connection
 - Component link failure recovery
 - Component link congestion prevention
 - Operator configuration
 - Composite link, component link, connection, LSP placement, etc
 - Management plane Support
 - Report which component link a LSP is assigned to
 - Alarm on component link failure

- Although interior functions are local, it is important for vendor device to be manageable in an interoperable way
Interior Functions

- **LSP flows with TE information**
 - Get LSP parameters from RSVP-TE messages

- **LSP flows without TE information**
 - LSP is signaled via LDP messages
 - Assign LDP LSP to pre-configured connection
 - Monitor connection BW and use it for BW optimization

- **Hybrid case- LSPs with TE and without TE info**
 - Obtains LSP parameters in different ways
 - Separate RSVP-TE LSP and LDP LSP into different connections
 - pre-empt the flows based on the priority when congestion happens
Exterior Functions

- Apply to MPLS routers via signaling or routing protocols
 - Protocol enhancement for further study
 - Requirements are in the separate draft
- Composite Link Advertisement
 - Advertise as a single virtual interface between connected routers within IGP
 - Possible to advertise multiple latency values or a range of values
- Component Link Setup
 - TE LSP may be signaled as a component link
 - TE LSP may be supported by MPLS(-TP) or GMPLS enabled transport network
Exterior Functions

- LSP Flows with TE information
 - RSVP-TE PATH and RESV messages are used for LSP establishment
 - LSR selects a label for LSP over a composite link
 - LSP parameters in PATH and RESV are used in LSP assignment

- LSP Flows without TE information
 - FEC is bound to a connection on a composite link
 - LDP Label Request message and Label Mapping message are used for LDP LSP establishment
 - Traffic volume measurement on a per connection

- Hybrid Case – LSPs with TE and without TE
 - Facilitate flow preemption on the capacity shortage
 - Provide soft preemption
Applicability

Composite link can apply between Ps, P and PE, and PEs
Applicability

- Component link may be a physical link or logical link
 - In single layer, physical link or TE LSP may be used as component link
 - In one IGP, R3 and R4 provides the segment of TE LSP
 - In different IGPs, R3 and R4 provides the connectivity between R1 and R2
 - In multi-layer, lower layer with GMPLS may provide a logical interface as a component link for the layer of composite link
Next Steps

- Agreement on requirements/ framework separation, scope and overall structure
- Adopt framework and requirement drafts into WG draft
 - Draft-so-yong-mpls-CTG-framework-00
 - Draft-so-yong-mpls-CTG-requirement-00
- Determine how best to organize this work and assign to appropriate working group(s).

Acknowledgements

Co-Authors like to thank Adrian F., Lou B., Kireeti K., Eric Gray, Dmitri P., etc. for their reviews and suggestions