A SAVI Solution for DHCP

Jun Bi
CERNET/Tsinghua Univ.
draft-jbi-savi-dhcp-00
IETF76, Hiroshima
Nov.9 2009
Outline

• Solution Overview
• Handling Special Situations
• Open Issues
• Implementation and Next Step
Solution Overview
Basis and Related Protocols

• A control packet snooping based solution. Data packet snooping is used as supplement.

• **Stage 1: DHCP Address Assignment**
 – DHCPv4(RFC2131)
 – DHCPv6(RFC3315, stateful)

• **Stage 2: Duplicate Detection**
 – IPv4 Address Conflict Detection(RFC5227)
 – IPv6 Duplicate Address Detection(RFC4862)
Typical Scenario

- DHCP Server
- SAVI Device
- SAVI Device
- SAVI Device
- DHCP Relay
- Host
Port (Trust Anchor) Types

Might be moved to framework

<table>
<thead>
<tr>
<th>Type</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAVI-Host (Recommend to deploy)</td>
<td>Snooping & Filter (most secure and light-weight)</td>
</tr>
<tr>
<td>SAVI-Poly</td>
<td>Snooping & Filter</td>
</tr>
<tr>
<td>SAVI-SAVI</td>
<td>No binding and no filtering</td>
</tr>
<tr>
<td>SAVI-DHCP-Trust</td>
<td>Trust DHCP Reply</td>
</tr>
<tr>
<td>SAVI-nonSAVI</td>
<td>Suggest to separate from SAVI area by VLAN</td>
</tr>
<tr>
<td>SAVI-Router</td>
<td>No define & no action</td>
</tr>
</tbody>
</table>
Conceptual Data Structures

• Control Plane: Binding State Table (BST)
 – Keep state and lifetime
 – Key on anchor and(or) address
 – Entry: *Anchor | *Address | State | Lifetime | Other

• Data Plane: Filtering Table (FT)
 – Used for filtering only (for instance, ACL)
 – Key on anchor
 – Entry: *Anchor | Address

• BST and FT can be combined or separated in implementation.
Prefix Configuration

• Configure reasonable prefix scope
 – Learn from RA or DHCP-PD
 – Manually configuration
• **Open issue**: Trust DHCP server or trust prefix configuration when DHCP acknowledged address is in **conflict** with the prefix?
 • Reason: Malicious/Fake DHCP server
 • If trust prefix configuration, then drop the malicious DHCP-reply
• **Security issue**: Keep RA secure
 – RA guard(draft-ietf-v6ops-ra-guard-03)?
 – Or SAVI-RA-Trust port for simplicity?
• Might be moved to framework
States of binding

- **START** A DHCP request (or a DHCPv6 Confirm) is received from host, and it may trigger a new binding.
- **LIVE** A DHCP address is acknowledged by a DHCP server.
- **DETECTION** A gratuitous ARP or Duplicate Address Detection NSOL has been sent by the host (or SAVI device).
- **BOUND** The address has passed duplicate detection and it is bound with the anchor.
State Transition Diagram

- Start
- Live
- Detection
- Bound

States:
- Start
- Live
- Detection
- Bound

Transitions:
- Timeout
- DHCP Request/Confirm
- DHCP Reply
- Response for Detection
- Detection Packet
- Lease time expires/ DHCP release/ decline
- Detection Timeout
- Reply for DHCP renew/rebind
State transition table

<table>
<thead>
<tr>
<th>State</th>
<th>Packet/Event</th>
<th>Action</th>
<th>Next State</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Request/Confirm</td>
<td>Set up new entry</td>
<td>START</td>
</tr>
<tr>
<td>START</td>
<td>ACK</td>
<td>Record lease time</td>
<td>LIVE</td>
</tr>
<tr>
<td>START</td>
<td>Timeout</td>
<td>Remove entry</td>
<td>-</td>
</tr>
<tr>
<td>LIVE</td>
<td>DAD NS/Gratuitous ARP</td>
<td>-</td>
<td>DETECTION</td>
</tr>
<tr>
<td>LIVE</td>
<td>DECLINE</td>
<td>Remove entry</td>
<td>-</td>
</tr>
<tr>
<td>LIVE</td>
<td>Timeout</td>
<td>Send ARP Req/NS</td>
<td>DETECTION</td>
</tr>
<tr>
<td>DETECTION</td>
<td>Timeout</td>
<td>-</td>
<td>BOUND</td>
</tr>
<tr>
<td>DETECTION</td>
<td>ARP RESPONSE/NA</td>
<td>Remove entry</td>
<td>-</td>
</tr>
<tr>
<td>DETECTION</td>
<td>DECLINE</td>
<td>Remove entry</td>
<td>-</td>
</tr>
<tr>
<td>BOUND</td>
<td>RELEASE/DECLINE</td>
<td>Remove entry</td>
<td>-</td>
</tr>
<tr>
<td>BOUND</td>
<td>Timeout</td>
<td>Remove entry</td>
<td>-</td>
</tr>
<tr>
<td>BOUND</td>
<td>Reply on RENEW/REBIND</td>
<td>Set new lifetime</td>
<td>BOUND</td>
</tr>
</tbody>
</table>
Filtering Specification

• Data packet:
 – Filter packet from SAVI-host and SAVI-poly port
 – By checking if (anchor, source) in Filtering Table

• Control packet (DHCP, NDP, ARP):
 – DHCPv4 Request/Discovery: source address MUST be all zero
 – DHCPv6 Request/Confirm: source address MUST be a bound address (either SLAAC or DHCP or manual, at least link-local)
 – DHCP Reply/Ack MUST be from port with SAVI-DHCP-Trust
 – NSol/ARP Request: source address MUST be a bound address (or unspecified address in case of DAD NS)
 – NAdv/ARP Reply: source address and target address MUST be a bound address.
Binding Number Limitation

• Set a limitation per port to stop DoS against binding table.

• Or a adaptive rate limit mechanism with the similar effect.
 – Request rate limitation depends on current binding entry number on the port
Handling Special Cases
Usage of Probe in Special Cases

• Usage of probe in special cases (will be explained in next slides)
 – Movement detection at poly-port
 – DAD/Gratuitous ARP
 – Not deliver to the source port
 – Alive detection: port down/up for assurance
 – NUD/ARP Request
 – Hold binding for inactive node
 – NA/ARP Response

• Format of probe
 – DAD/Gratuitous ARP: link layer address of Host
 – NUD/ARP Request: IP address and link layer address of SAVI device (switch management address)
 – NA/ARP Response: the link layer address and IP address of host
Data Packet Snooping at SAVI-Poly port

- Handle moving from one SAVI-Poly port to another SAVI-Poly port.
- No DHCP procedure will be triggered at the host after moving!
 - Different from movement at SAVI-Host port (host sending DHCP-Confirm)
- A DHCP confirm will be sent by the SAVI device then a DAD probe will be triggered and the old binding will be removed.
Binding Remove

- **MUST (Normal case):**
 - Remove an binding entry whenever lifetime expires.

- **MAY (Special case):**
 - When the SAVI device receives a DAD NS/Gra ARP request target at an address bound and there is no reply from the port (the link is up)
 - At SAVI-host port, hold binding for Host (inactive node) by sending NA/ARP response
 - At SAVI-poly port, remove (for host movement) or hold (for inactive node)

- Other situations discussed in “Port down event”
Port Down Event

• SAVI-Host/SAVI-Poly port
 – To handle flappy links, keep binding entries of the port with link down event for a very short time. After the period, remove the entries.
 – To handle movement, if receiving DAD NS/Gra ARP request target at the address during the period, remove the entry.
 – If port turns UP during the period
 • Optionally send probes to SAVI-host port for assurance
 • MUST send probes to SAVI-Poly port for assurance (to handle a very special case, see next slide)
Port Down/Up Event at SAVI-Poly port

1. Movement

3. Alive detection

4. Delete entries

5. Set up entries based on Data packet trigger procedure

1. Movement

2. Fast Attach
Open Issues
Open issues

• Whether to keep START state
 – Benefits:
 • Bind address and anchor securely (know exact source port of DHCP-request)
 • Limit Request rate to protect DHCP server
 – Defects: Temporary states (may be dangerous at SAVI-ploy port, but it’s OK at SAVI-host)
 – Optional (contributed by Eric Levy-Abegnoli)
 • If MAC is unspoofable, then we don’t need START state
 • Insert option 82 into packet
 – But not all servers support for option 82
 – Burden for SAVI switch to act as DHCP RELY
Implementation and Next Step
Implementation and Next Step

• Currently, this solution has been implemented by multiple vendors and is being deployed in Tsinghua Campus/CERNET2
 – will be reported in my next PPT (CNGI-CERNET SAVI deployment update)

• Can we move forward with this document as the basis of ietf-savi-dhcp-00
Thank you very much!

Q&A