76th IETF, Hiroshima, Japan November, 2009

Session Initiation Protocol (SIP) Common Log Format (CLF) (draft-gurbani-sipclf-problem-statement-00)

Editors:

Vijay K. Gurbani <vkg@bell-labs.com> Bell Laboratories/Alcatel-Lucent Eric Burger <eburger@standardstrack.com> Neustar, Inc.

Contributors

Humberto Abdelnur Humberto.Abdelnur@loria.fr
Tricha Anjali tricha@ece.iit.edu
Oliver Festor Olivier.Festor@loria.fr
Hadriel Kaplan hkaplan@acmepacket.com
Adam Roach adam@nostrum.com
Theo Zourzouvillys theo@voip.co.uk
Dale Worley dworley@nortel.com

What is CLF

Common Log Format (CLF): A summary of an application layer PDU*

* (To paraphrase RjS)

Need for a CLF

SIP has many entities participating in a session setup request.

Need some way to find out what is going on in real-time or post process.

Model: HTTP CLF!

HTTP CLF

What SIP CLF is and is not ...

SIP CLF is NOT...

- ... a replacement for a CDR (Call Detail Record).
- ... a billing tool.
- ... a QoS measurement tool.

SIP CLF IS:

- ... a standardized format that can be used by all SIP entities.
- ... an easily digestible log of past and current transactions.
- ... a format that allows quick parsing to discover relationships between transactions

\$ grep yuhyt6 sip-clf.txt
gets all transactions with this
label.

• ... amenable for easy parsing and creating other innovative tools.

Use cases

- Trend analysis ("I want to find out which geographical area are the most calls coming from at 2:00 AM").
- Troubleshooting ("How long did it take to generate a final response to an INVITE?")
- Message correlation across transactions ("Find all messages corresponding to Call-ID X, including all forked branches")
- Transaction correlation across dialogs ("Find all messages for dialog created by Call-ID X and tags A and B").
- Establish concise and standardized diagnostic trail of a SIP session locally and globally.
- Establish concise and standardized format for training automata (anomaly detection.)

Benefits of a SIP CLF

- Establishes a common reference for logging SIP messages across vendor/open-source implementations.
- Correlate SIP messages across transactions and dialogs.
- Easily search, merge, and summarize log records.
- Train anomaly detection systems to trigger alarms.
- Allow independent tool providers to provide innovative tools for trend analysis and traffic reports.
- Common diagnostic trail from testing of SIP equipment.
- Can be used for off-line analysis (trend analysis) as well as realtime analysis.

Challenges in defining SIP CLF

- SIP is not a *linear* request-reply protocol
 - HTTP is *linear*: pipelining okay, one request = one response.
- Complexity inherent in the protocol:
 - Serial and parallel forking elicit multiple responses.
 - Delays between getting a request and sending a response (outside of "long polling" in HTTP, servers respond quickly; not quite so in SIP. Impact on proxies.)
 - Multiple transactions grouped in a dialog; dialog persists for a long time, transactions short-lived (e.g., BYE comes much later, but relation between INVITE and BYE should be preserved in a log file.)

Challenges in defining SIP CLF

- ACK requests need careful considerations:
 - Only tied to an INVITE.
 - No responses for ACKs.
 - For non-2xx, ACKs hop-by-hop (part of INVITE transaction.)
 - For 2xx, ACK end-to-end.
- CANCEL requests need careful considerations:
 - Only tied to an INVITE.
 - Requires exactly one response.
 - Is propagated hop-by-hop.

Challenges in defining SIP CLF

- INVITE can pend, resulting in a 1xx response (200ms rule.) This 1xx response needs to be captured to train automata.
- SIP has a richer set of actors: UAS, UAC, B2BUA, proxy, registrar, redirect server, ...
- Need to take SIP extensibility in account.
- Preserve user privacy in CLF (through anonymization, etc.)

SIP CLF fields

Date

Remotehost

Authuser

Method

Request-URI

From (including tag)

To (including tag)

Call-ID

Status

Contact list

Server-transaction

Client-transaction

For sake of illustration only, example is in ASCII:

A proxy receives a request and sends a provisional upstream

```
<allOneLine>
     1230756560 192.168.1.10 - INVITE sip:bob@example.net
     sip:alice@example.com;tag=hy7 sip:bob@example.net
     7yhgt1@example.com - uyt67h FORK/-
</allOneLine>
     1230756560 uyt67h - 100 INVITE + -
```

The proxy forks two branches:

```
<allOneLine>
    1230756563 - INVITE sip:bob@home.example.net
    sip:alice@example.com;tag=hy7 sip:bob@example.net
    7yhgt1@example.com - uyt67h CLIENT/hb76
</allOneLine>
<allOneLine>
    1230756564 - INVITE sip:bob@carphone.example.net
    sip:alice@example.com;tag=hy7 sip:bob@example.net
    7yhgt1@example.com - uyt67h CLIENT/hb77
</allOneLine>
```

Proxy receives provisionals and final responses:

```
1230756565 uyt67h hb76 100 INVITE sip:bob@example.net;tag=876v -
1230756565 uyt67h hb77 100 INVITE sip:bob@example.net;tag=561t -
1230756565 uyt67h hb76 180 INVITE sip:bob@example.net;tag=876v -
1230756565 uyt67h hb77 180 INVITE sip:bob@example.net;tag=561t -
1230756567 uyt67h hb77 182 INVITE sip:bob@example.net;tag=561t -
1230756568 uyt67h hb76 500 INVITE sip:bob@example.net;tag=876v -
<altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line"><altonolor="line">
```

Proxy sends 200 OK upstream and ACKs 500:

```
<allOneLine>
    1230756569 uyt67h - 200 INVITE
    sip:bob@example.net;tag=561t
    "sip:bob@home.example.net"
</allOneLine>
<allOneLine>
    1230756569 + - ACK sip:bob@home.example.net + + + -
    uyt67h CLIENT/hb76
</allOneLine>
```

Solutions space

- ASCII Representation (http://tools.ietf.org/html/draft-gurbani-sipping-clf-01)
- Indexed representation (http://tools.ietf.org/html/draft-roach-sipping-clf-syntax-01)
- PCAP representation (not actively pursued by author; see http://tools.ietf.org/html/draft-kaplan-sipping-clf-pcap-00)
- IPFIX representation (no drafts exist yet.)