
1 /16 Pascal URIEN, IETF 76th, Thursday November 12th Hiroshima Japan

draft-urien-tls-psk-emv-00

EMV support for TLS-PSK

P.Urien, Telecom ParisTech
L.Cogneau and P. Martin, Xiring

Pascal.Urien@telecom-paristech.fr

http://www.telecom-paristech.fr

2 /16 Pascal URIEN, IETF 76th, Thursday November 12th Hiroshima Japan

Goal

This draft describes an authentication protocol based
on TLS pre shared key (TLS-PSK), RFC 4279.

Identity and psk attributes, defined in TLS-PSK are
extracted from EMV chips, which are widely
deployed for payments transactions.
The goal of this protocol is to provide a strong
mutual authentication transparent for the end users
and guarantying the confidentiality and the integrity
of exchanged data over Internet network.

This is a new step avoiding the use of static passwords
for on-line services, such as electronic banking or
electronic payment

3 /16 Pascal URIEN, IETF 76th, Thursday November 12th Hiroshima Japan

Global architecture

The user
Holds an EMV device, whose card number is called PAN
Works with TLS-PSK

The EMV device is registered to the WEB site
A database establishes a relation between the EMV-ID,
used in TLS-PSK and the PAN (card number)

The cryptogram (EMV-CTG) produced by the EMV-Device is
checked by the EMV device issuer

+-----------+ TLS-PSK +-------------+ +----------+
	<------->		(PAN,EMV-CTG)	ISSUER
USER	EMV-ID	WEB	------------>	AUTH.
	EMV-CTG	SITE	OK	SERVER
	EMV-PSK		<-----------	
+----+------+ +------+------+ +-----+----+

! ! !
+---v--+ ! DATABASE +--+--+
| EMV | +--------+-----+-------+ | HSM |
|DEVICE| | EMV-ID | PAN | Other | +-----+
+------+ +--------+-----+-------+

4 /16 Pascal URIEN, IETF 76th, Thursday November 12th Hiroshima Japan

RFC 4279, PSK

struct {
select (KeyExchangeAlgorithm)
{ case psk:

opaque psk_identity_hint<0..2^16-1>;
};
} ServerKeyExchange;

struct {
select (KeyExchangeAlgorithm)
{ case psk:

opaque psk_identity<0..2^16-1>;
} exchange_keys;
} ClientKeyExchange;

PreMasterSecret
02 bytes (PSK length)
N bytes NULL (0)
02 bytes (PSK Length)
N bytes (PSK value)

5 /16 Pascal URIEN, IETF 76th, Thursday November 12th Hiroshima Japan

RFC 4279, DHE-PSK

struct {
select (KeyExchangeAlgorithm)
{ case diffie_hellman_psk:

opaque psk_identity_hint<0..2^16-1>;
};
} ServerKeyExchange;

struct {
select (KeyExchangeAlgorithm)
{ case diffie_hellman_psk:

opaque psk_identity<0..2^16-1>;
} exchange_keys;
} ClientKeyExchange;

PreMasterSecret
02 bytes (DH length)
DH value
02 bytes (PSK Length)
PSK value

6 /16 Pascal URIEN, IETF 76th, Thursday November 12th Hiroshima Japan

RFC 4279, RSA-PSK

struct {
select (KeyExchangeAlgorithm)
{ case rsa_psk:

opaque psk_identity_hint<0..2^16-1>;
};
} ServerKeyExchange;

Struct {
select (KeyExchangeAlgorithm)
{ case rsa_psk:

opaque psk_identity<0..2^16-1>;
EncryptedPreMasterSecret;

} exchange_keys;
} ClientKeyExchange;

PreMasterSecret
02 bytes (0048)
02 bytes, version
46 bytes, random
02 bytes PSK Length
N bytes (PSK value)

7 /16 Pascal URIEN, IETF 76th, Thursday November 12th Hiroshima Japan

EMV-Device structure

An EMV smart card contains one or several EMV
applications.
An EMV application manages a set of information that
can be freely read.

These data are encoding according to the ASN.1
syntax.

An EMV application produces cryptograms that
authenticate payment transactions.
A Data Object List (DOL), is a list of tuples TAG value
(one or two bytes) and object length (one byte)

8 /16 Pascal URIEN, IETF 76th, Thursday November 12th Hiroshima Japan

EMV details1/2

Application Primary Account Number (PAN)
The card number
Tag 5A, Length 08, Value: 49 73 01 97 61 90 02 78

Application PAN Sequence Number (PSN)
An additional identifier for the card
Tag 34, Length 01, Value: 00

Signed Static Application Data (SSAD)
A signature for a set of information stored in the
card.
Tag 93

9 /16 Pascal URIEN, IETF 76th, Thursday November 12th Hiroshima Japan

EMV Details 2/2

Card Risk Management Data 1 (CDOL1)
CDOL1 is the list of objects required for the
generation of a transaction cryptogram
Tag 8C, Length 1B, Value: 9F 02 06 9F 03 06 9F 1A 02
95 05 5F 2A 02 9A 03 9C 01 9F 37 04 9F 45 02 9F 4C 08

Card Risk Management Data 2 (CDOL2)
CDOL2 is the list of objects required for the
completion of a transaction.
It is the concatenation of the Authorization Response
Code (TAG 8A, length 02) and the CDOL1 value.
Tag 8D, Length 1A, Value: 8A 02 9F 02 06 9F 03 06 9F
1A 02 95 05 5F 2A 02 9A 03 9C 01 9F 37 04 9F 4C 08

10 /16 Pascal URIEN, IETF 76th, Thursday November 12th Hiroshima Japan

ARQC & AAC

ARQC
The Authorization Request Cryptogram (ARQC) starts an
EMV transaction.
A set of values, whose elements are listed by the CDOL1
object, and without TAG or length information, are pushed
towards the card.
The content of CDOL1 is noted xCDOL1 and the response to
ARQC is noted yCDOL1.

xCDOL1 comprises an Unpredictable Number (TAG 9F37, length
04), i.e. a random value of 32 bits.
The response yCDOL1, includes an 8 bytes cryptogram and
additional information.

AAC
The Application Authentication Cryptogram ends an EMV
transaction.
A set of values, whose elements are listed by the CDOL2
object, and without TAG or length information, are pushed
towards the card.
The content of CDOL2 is noted xCDOL2 and the response to
AAC is noted xCDOL2.

11 /16 Pascal URIEN, IETF 76th, Thursday November 12th Hiroshima Japan

ARQC & AAC example

ARQC
xCDOL1

00 00 00 00 00 00 00 00 00 00 00 00 00 00 80 00 00 00 00 00 00 01 01 01 00
00 00 00 00 = r32 = 32 bits random number
00 00 00 00 00 00 00 00 00 00

yCDOL1
77 21 9F 27 01 80 9F 36 02 01 2E 9F 26 08
3F 79 8C 12 3E F2 9A 51 = AC1
9F 10 0A 06 16 0A 03 A4 80 00 02 00 00

AAC
xCDOL2

5A 33 00 00 00 00 00 00 00 00 00 00 00 00 00 00 80 00 00 00 00 00 00 01 01
01 00
00 00 00 00 = 32 bits random number
00 00 00 00 00 00 00 00

yCDOL2
77 21 9F 27 01 00 9F 36 02 01 2E 9F 26 08
82 8E 0A 3E 70 D4 4A D4 = AC2
9F 10 0A 06 16 0A 03 25 80 00 02 00 00

12 /16 Pascal URIEN, IETF 76th, Thursday November 12th Hiroshima Japan

TLS-PSK-EMV

The basic idea of this protocol is to used the PAN,
i.e. the card number as a static PSK.

However the PAN entropy is small, about 36
bits, so brute force attacks are possible. In
order to avoid these issues, the PAN value is
replaced by others parameters stored in the
card and providing sufficient entropy, e.g.
greater than 80 bits.
The psk-identity is a list of information proving
that the client holds the card associated with
the PAN.

This proof is based on an ARQC associated with a 32
bits random number, which is noted r32.

13 /16 Pascal URIEN, IETF 76th, Thursday November 12th Hiroshima Japan

TLS-PSK-EMV definitions

EMV-ID
EMV-ID = h(h(SSAD)), where

SSAD is the Signed Static Application Data,
and h is a digest function

EMV-CPG
The EMV cryptogram (emv-cpg) is the response (yCDOL1) to
an ARQC associated with the r32 random number. The
ARQC request is followed by an AAC operation that cancels
the EMV transaction.
Values used for ARQC and AAC (xCDOL1 and xCDOL2) are
fix, apart from the unpredictable number set to r32.
By convention, the R32 number is a concatenation of
multiple r32i values (up to four), and EMV-CPG is the
concatenation of associated emv-cpgi, with the index i
ranging between 1 and R32-length/4.

EMV-PSK
EMV-PSK = h(SSAD), where

SSAD is the Signed Static Application Data,
and h is a digest function

14 /16 Pascal URIEN, IETF 76th, Thursday November 12th Hiroshima Japan

TLS-PSK & TLS-PSK-DH

psk = EMV-PSK.
psk-identity

RH = h(ClientRandom | ServerRandom), where
h is a digest function.

R32 is the 32 less significant bits of RH.

The psk-identity is the concatenation of the
following values:

uint16(length) | R32
uint16(length) | EMV-ID
unit16(length) | PSN
uint16(length) | CDOL1
uint16(length) | EMV-CPG

15 /16 Pascal URIEN, IETF 76th, Thursday November 12th Hiroshima Japan

TLS-PSK-RSA

psk = EMV-PSK
psk-identity

RH = h(ClientRandom | ServerRandom |
ServerPublicKey), where h is a digest function.
R32 is the 32 (or more) less significant bits of RH.
The psk-identity is the concatenation of the following
values:

uint16(length) | R32
uint16(length) | EMV-ID
unit16(length) | PSN
uint16(length) | CDOL1
uint16(length) | EMV-CPG

16 /16 Pascal URIEN, IETF 76th, Thursday November 12th Hiroshima Japan

Questions ?

