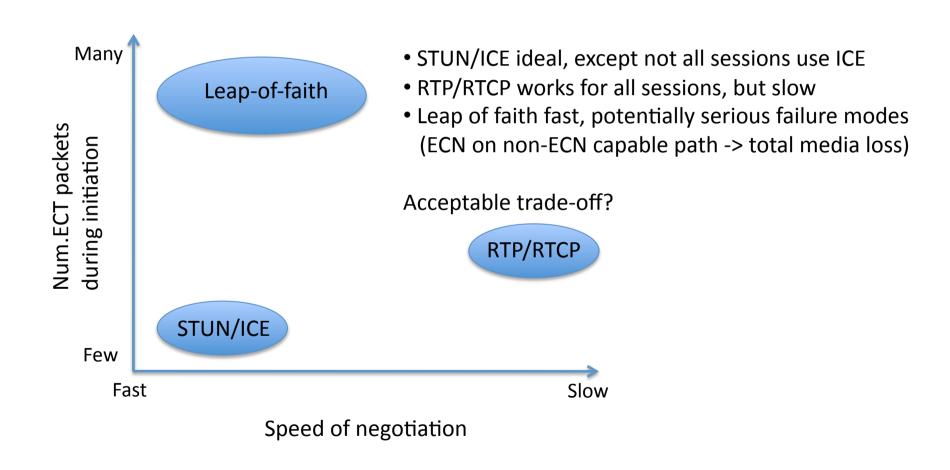

ECN for RTP over UDP/IP

draft-westerlund-avt-ecn-for-rtp-02.txt

Magnus Westerlund
Ingemar Johansson
Colin Perkins
Piers O'Hanlon
Ken Carlberg

Overview of Proposal

- Discusses how ECN can be used with RTP sessions running over UDP/IP
 - Negotiation of ECN capability
 - Initiation of ECN use within an RTP session
 - Ongoing use of ECN
 - Detecting failures and receiver misbehaviour


Changes since last meeting

- Merged with draft-carlberg-avt-rtp-ecn-02.txt and draftcarlberg-avt-rtcp-xr-ecn-01.txt
- Added leap-of-faith initiation
- Made use of ECN nonce optional
- Updated signalling, RTCP packet formats
 - Receiver preference for sender ECT: 0, 1, or random
 - Recommend random, but allow non-random to avoid disrupting header compression, especially in controlled environments
 - Sender can still ignore preference to use random
 - Negotiate capability to read or set ECN bits independently for each session participant
- Editorial cleanup

Initiation of ECN Usage

- Three options
 - Probe using RTP data, use RTCP for feedback
 - Requires 3 RTCP reporting intervals with ECT marks received and stable receiver population before transition to full ECT
 - Probe using STUN request, feedback on STUN response
 - One additional RTT to verify ECN-support once candidate chosen
 - Only suitable for sessions using ICE for NAT traversal
 - Leap-of-faith: send RTP with ECT, report failure via RTCP
 - Assumes ECN-capable path; suitable for controlled network only

Initiation of ECN Usage

Ongoing use of ECN with RTP

- RTCP reporting and feedback
 - Regular RTCP reports to monitor continuous operation
 - Use RTP/AVPF with minimal reports for CE events
 - Optional ECN nonce + RLE of lost/marked packets in regular reports
- Congestion response
 - Sender driven, e.g. TFRC
 - Receiver driven, e.g. layered coding
- Detecting failure
 - Misbehaving receivers or middle-boxes
 - Path changes and/or mobility
 - Group membership changes

Continually monitor ECN operation and fallback to non-ECN mode if necessary

Rapid RTCP ECN-CE feedback

Sent in RTCP AVPF NACK to indicate CE-mark received; generally rapid feedback

Extended highest sequence number start value unpredictable

Counters are cumulative and start at zero

- -> provides some robustness to loss of feedback
- -> duplicates included in the count

Regular RTCP-based Feedback

Sent in regularly scheduled compound RTCP packet, with RTCP SR/RR ->O(seconds) reporting interval

Same statistics as rapid feedback report, when combined with SR/RR Provides robustness against lost reports

Handling duplication of RTP packets

- The counters have an issue with packet duplication
 - Each received packet will be counted by receiver => receiver will have counters where sum over them is larger than number sent
 - Duplicate packets may arrive with different markings, for example as ECN-CE and as ECT
 - This creates uncertainty in verification process
 - If number of duplicates are larger than re-marked packets it may not be detected.
 - Sender needs more advanced logic to determine issues
 - Tracking duplication requires substantial receiver state
 - Not done in regular RTCP Receiver reports

Transport of ECN nonce in RTCP

2-bit Nonce XOR sum; chunks run-length encoded list of lost/CE-marked packets

Use of ECN nonce is OPTIONAL, to detect cheating receivers – regular reports allow detection of non-ECN-capable middle-boxes

Other Issues

- Consider initiation optimizations to allow for multi-SSRC sender nodes to have rapid usage of ECN
- Feedback suppression for ECN-CE reports, both for groups, and in case an additional CE mark arrives within an RTT at the receiver

Actions and Future Directions

- Hope to charter as an AVT work item, with parallel review and last call in TSVWG
 - This draft will continue to focus on how to signal and convey ECN for use with RTP sessions over UDP/IP
 - Detailed congestion response for real-time traffic will not be specified in this draft
 - System must respond to ECN-CE marks in the same way it responds to packet loss (there are a range of solutions)