Network Working Group R. Stewart

Internet-Draft Adara Networks
Intended status: Best Current Practice M. Tuexen
Expires: March 13, 2014 I. Ruengeler

Muenster Univ. of Appl. Sciences
September 09, 2013

Stream Control Transmission Protocol (SCTP) Network Address Translation
draft-ietf-behave-sctpnat-09.txt

Abstract

Stream Control Transmission Protocol [RFC4960] provides a reliable
communications channel between two end-hosts in many ways similar to
TCP [RFC0793]. With the widespread deployment of Network Address
Translators (NAT), specialized code has been added to NAT for TCP
that allows multiple hosts to reside behind a NAT and yet use only a
single globally unique IPv4 address, even when two hosts (behind a
NAT) choose the same port numbers for their connection. This
additional code is sometimes classified as Network Address and Port
Translation or NAPT. To date, specialized code for SCTP has NOT yet
been added to most NATs so that only pure NAT is available. The end
result of this is that only one SCTP capable host can be behind a

NAT.

This document describes an SCTP specific variant of NAT which
provides similar features of NAPT in the single point and multi-point
traversal scenario.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. Itis inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on March 13, 2014.

Stewart, et al. Expires March 13, 2014 [Page 1]

Internet-Draft SCTP NAT September 2013

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction 2
2. Conventions 3
3. Terminologyo 3
4, SCTP NAT Traversal Scenarios 4
4.1. Single Point Traversal 4
4.2. MultiPointTraversal 5
5. Limitations of Classical NAPT for SCTP 6
6. The SCTP Specific Variant of NAT 6
7. NATtoSCTP 10
8. Handling of Fragmented SCTP Packets 10
9. Various Examples of NAT Traversals 10
9.1. Single-homed Client to Single-homed Server 10
9.2. Single-homed Client to Multi-homed Server........ 12
9.3. Multihomed Clientand Server 15
9.4. NAT Loses ltsState 18
9.5. Peer-to-Peer Communication 20
10. IANA Considerations 24
11. Security Considerations 24
12. Acknowledgments 24
13. References 24
13.1. Normative References 24
13.2. Informative References 25
Authors’ Addresses, 25

1. Introduction

Stream Control Transmission Protocol [RFC4960] provides a reliable
communications channel between two end-hosts in many ways similar to
TCP [RFC0793]. With the widespread deployment of Network Address
Translators (NAT), specialized code has been added to NAT for TCP
that allows multiple hosts to reside behind a NAT and use private

Stewart, et al. Expires March 13, 2014 [Page 2]

Internet-Draft SCTP NAT September 2013

addresses (see [RFC5735]) and yet use only a single globally unique
IPv4 address, even when two hosts (behind a NAT) choose the same port
numbers for their connection. This additional code is sometimes
classified as Network Address and Port Translation or NAPT. To date,
specialized code for SCTP has not yet been added to most NATSs so that
only true NAT is available. The end result of this is that only one

SCTP capable host can be behind a NAT.

This document proposes an SCTP specific variant NAT that provides the
NAPT functionality without changing SCTP port numbers. The authors
feel it is possible and desirable to make these changes for a number

of reasons.

o ltis desirable for SCTP internal end-hosts on multiple platforms
to be able to share a NAT’s public IP address, much as TCP does
today.

o If a NAT does not need to change any data within an SCTP packet it
will reduce the processing burden of NAT'ing SCTP by NOT needing
to execute the CRC32c checksum required by SCTP.

o Not having to touch the IP payload makes the processing of ICMP
messages in NATs easier.

2. Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

3. Terminology

For this discussion we will use several terms, which we will define
and point out in Figure 1.

Private-Address (Priv-Addr): The private address that is known to
the internal host.

Internal-Port (Int-Port): The port number that is in use by the host
holding the Private-Address.

Internal-VTag (Int-VTag): The Verification Tag that the internal
host has chosen for its communication. The VTag is a unique 32
bit tag that must accompany any incoming SCTP packet for this
association to the Private-Address.

External-Address (Ext-Addr): The address that an internal host is
attempting to contact.

Stewart, et al. Expires March 13, 2014 [Page 3]

Internet-Draft SCTP NAT September 2013

External-Port (Ext-Port): The port number of the peer process at the
External-Address.

External-VTag (Ext-VTag): The Verification Tag that the host holding
the External-Address has chosen for its communication. The VTag
is a unique 32 bit tag that must accompany any incoming SCTP
packet for this association to the External-Address.

Public-Address (Pub-Addr): The public address assigned to the NAT
box which it uses as a source address when sending packets towards
the External-Address.

Internal Network | External Network
Private | Public External

o + Address | Address /--V--\ Address +--------- +
SCTP	S — / \	SCTP			
end pointl::::::::::l NAT	:::::::	Internet	—=—==—==—==	end p0	nt
A	ot \ /	B			
oo + Internal | \--\--/ External +--------- +

Internal Port | Port External

VTag | VTag

Figure 1: Architecture
4. SCTP NAT Traversal Scenarios

This section defines the notion of single and multi-point NAT
traversal.

4.1. Single Point Traversal

In this case, all packets in the SCTP association go through a single
NAT, as shown below:

Internal Network | External Network
B S — + | | [--\/--\ B +
| SCTP | U I\ | SCTP |
|end pointl:::::::::l NAT |::::::::: | Internet | ::::::::lend pointl
| A | F—— / | B |
R + | \--N\--/ R —— +

Single NAT scenario

Stewart, et al. Expires March 13, 2014 [Page 4]

Internet-Draft SCTP NAT September 2013

A variation of this case is shown below, i.e., multiple NATs in a
single path:

Internal | External : Internal | External

e + : | [~-\--\ A +

| SCTP | +--—--+ : +o-t \ | SCTP |

|end point|==| NAT | : | NAT |==| Internet |==|end point|
| A | +-—-+ : oot /] B |

e + : | \--N--/ A +

Serial NATs scenario

In this single point traversal scenario, we must acknowledge that
while one of the main benefits of SCTP multi-homing is redundant
paths, the NAT function represents a single point of failure in the
path of the SCTP multi-home association. However, the rest of the
path may still benefit from path diversity provided by SCTP multi-
homing.

The two SCTP endpoints in this case can be either single-homed or
multi-homed. However, the important thing is that the NAT (or NATS)
in this case sees all the packets of the SCTP association.

4.2. Multi Point Traversal

This case involves multiple NATs and each NAT only sees some of the
packets in the SCTP association. An example is shown below:

Internal | External
SR J-=\-=-\
+ + [======= INAT A |m========\ / \ e +
| SCTP |/ 4wt v \ | SCTP | | |
|end point|/ | Internet |===|end point|
| A | \ /|1 B |
B —— +\ S — + /\ A S —— +
\:::::::lNAT B |:::::::::/ \---\/---/
S — +

Parallel NATs scenario

This case does NOT apply to a single-homed SCTP association (i.e.,
BOTH endpoints in the association use only one IP address). The
advantage here is that the existence of multiple NAT traversal points
can preserve the path diversity of a multi-homed association for the

Stewart, et al. Expires March 13, 2014 [Page 5]

Internet-Draft SCTP NAT September 2013

entire path. This in turn can improve the robustness of the
communication.

5. Limitations of Classical NAPT for SCTP

Using classical NAPT may result in changing one of the SCTP port
numbers during the processing which requires the recomputation of the
transport layer checksum. Whereas for UDP and TCP this can be done
very efficiently, for SCTP the checksum (CRC32c) over the entire
packet needs to be recomputed. This would add considerable to the
NAT computational burden, however hardware support may mitigate this
in some implementations.

An SCTP endpoint may have multiple addresses but only has a single
port number. To make multipoint traversal work, all the NATs

involved must recognize the packets they see as belonging to the same
SCTP association and perform port number translation in a consistent
way. One possible way of doing this is to use pre-defined table of
ports and addresses configured within each NAT. Other mechanisms
could make use of NAT to NAT communication. Such mechanisms are
considered by the authors not to be deployable on a wide scale base
and thus not a recommended solution. Therefore the SCTP variant of
NAT has been developed.

6. The SCTP Specific Variant of NAT

In this section we assume that we have multiple SCTP capable hosts
behind a NAT which has one Public-Address. Furthermore we are
focusing in this section on the single point traversal scenario.

The modification of SCTP packets sent to the public Internet is easy.
The source address of the packet has to be replaced with the Public-
Address. It may also be necessary to establish some state in the NAT
box to handle incoming packets, which is discussed later.

For SCTP packets coming from the public Internet the destination
address of the packets has to be replaced with the Private-Address of
the host the packet has to be delivered to. The lookup of the
Private-Address is based on the External-VTag, External-Port,
External-Address, Internal-VTag and the Internal-Port.

For the SCTP NAT processing the NAT box has to maintain a table of
Internal-VTag, Internal-Port, Private-Address, External-VTag,
External-Port and whether the restart procedure is disabled or not.

An entry in that table is called a NAT state control block. The

function Create() obtains the just mentioned parameters and returns a
NAT-State control block.

Stewart, et al. Expires March 13, 2014 [Page 6]

Internet-Draft SCTP NAT September 2013

The entries in this table fulfill some uniqueness conditions. There
must not be more than one entry with the same pair of Internal-Port
and External-Port. This rule can be relaxed, if all entries with the
same Internal-Port and External-Port have the support for the restart
procedure enabled. In this case there must be no more than one entry
with the same Internal-Port, External-Port and Ext-VTag and no more
than one entry with the same Internal-Port, External-Port and Int-
VTag.

The processing of outgoing SCTP packets containing an INIT-chunk is
described in the following figure. The scenario shown is valid for
all message flows in this section.

[--\--\
R + S + / \ E +
| Host A | <------ > | NAT | <------ > | Internet | <------ > | Host B |
E —— + S — + \ / S —— +

\--N\---/

INIT[Initiate-Tag]
Priv-Addr:Int-Port ------ > Ext-Addr:Ext-Port
Ext-VTag=0

Create(Initiate-Tag, Int-Port, Priv-Addr, 0)
Returns(NAT-State control block)

Translate To:

INIT[Initiate-Tag]
Pub-Addr:Int-Port ------ > Ext-Addr:Ext-Port
Ext-VTag=0

It should be noted that normally a NAT control block will be created.

However, it is possible that there is already a NAT control block

with the same External-Address, External-Port, Internal-Port, and
Internal-VTag but different Private-Address. In this case the INIT

SHOULD be dropped by the NAT and an ABORT SHOULD be sent back to the
SCTP host with the M-Bit set and an appropriate error cause (see
[I-D.ietf-tsvwg-natsupp] for the format). The source address of the

packet containing the ABORT chunk MUST be the destination address of

the packet containing the INIT chunk.

It is also possible that a connection to External-Address and
External-Port exists without an Internal-VTag conflict but the

Stewart, et al. Expires March 13, 2014 [Page 7]

Internet-Draft SCTP NAT September 2013

External-Address does not support the DISABLE_RESTART feature (noted
in the NAT control block when the prior connection was established).

In such a case the INIT SHOULD be dropped by the NAT and an ABORT
SHOULD be sent back to the SCTP host with the M-Bit set and an
appropriate error cause (see [I-D.ietf-tsvwg-natsupp] for the

format).

The processing of outgoing SCTP packets containing no INIT-chunk is
described in the following figure.

[--\/--\
S + S — + / \ R +
| Host A | <------ > | NAT | <------ > | Internet | <------ > | HostB |
[— + S — + \ / [— +

\--N\---/

Priv-Addr:Int-Port ------ > Ext-Addr:Ext-Port
Ext-VTag

Translate To:

Pub-Addr:Int-Port ------ > Ext-Addr:Ext-Port
Ext-VTag

The processing of incoming SCTP packets containing INIT-ACK chunks is
described in the following figure. The Lookup() function getting as

input the Internal-VTag, Internal-Port, External-VTag (=0), External-

Port, and External-Address, returns the corresponding entry of the

NAT table and updates the External-VTag by substituting it with the

value of the Initiate-Tag of the INIT-ACK chunk. The wildcard

character signifies that the parameter’s value is not considered in

the Lookup() function or changed in the Update() function,

respectively.

[--\/--\
S —— + S — + / \ S —— +
| Host A | <------ > | NAT | <------ > | Internet | <------ > | Host B |
S + S — + \ / R +

\--N\---/

INIT-ACK]Initiate-Tag]
Pub-Addr:Int-Port <---- Ext-Addr:Ext-Port
Int-VTag

Stewart, et al. Expires March 13, 2014 [Page 8]

Internet-Draft SCTP NAT September 2013

Lookup(Int-VTag, Int-Port, *, 0, Ext-Port)
Update(*, *, *, Initiate-Tag, *)

Returns(NAT-State control block containing Private-Address)

INIT-ACK]Initiate-Tag]
Priv-Addr:Int-Port <------ Ext-Addr:Ext-Port
Int-VTag

In the case Lookup fails, the SCTP packet is dropped. The Update
routine inserts the External-VTag (the Initiate-Tag of the INIT-ACK
chunk) in the NAT state control block.

The processing of incoming SCTP packets containing an ABORT or
SHUTDOWN-COMPLETE chunk with the T-Bit set is described in the
following figure.

[--\--\
R + S + / \ E +
| Host A | <------ > | NAT | <------ > | Internet | <------ > | Host B |
E —— + S — + \ / S —— +

\--N\---/

Pub-Addr:Int-Port <------ Ext-Addr:Ext-Port
Ext-VTag

Lookup(O, Int-Port, *, Ext-VTag, Ext-Port)
Returns(NAT-State control block containing Private-Address)

Priv-Addr:Int-Port <------ Ext-Addr:Ext-Port
Ext-VTag

The processing of other incoming SCTP packets is described in the
following figure.

[--\/--\
[+ A + / \ f +
| Host A | <------ > | NAT | <------ > | Internet | <------ >| Host B |
R + S + \ / E +

\--N\---/

Stewart, et al. Expires March 13, 2014 [Page 9]

Internet-Draft SCTP NAT September 2013

Pub-Addr:Int-Port <------ Ext-Addr:Ext-Port
Int-VTag

Lookup(Int-VTag, Int-Port, *, *, Ext-Port)
Returns(NAT-State control block containing Local-Address)

Priv-Addr:Int-Port <------ Ext-Addr:Ext-Port
Int-VTag

For an incoming packet containing an INIT-chunk a table lookup is
made only based on the addresses and port numbers. If an entry with
an External-VTag of zero is found, it is considered a match and the
External-VTag is updated.

This allows the handling of INIT-collision through NAT.

7. NAT to SCTP
This document at various places discusses the sending of specialized
SCTP chunks (e.g. an ABORT with M-Bit set). These chunks and
procedures are not defined in this document, but instead are defined
in [I-D.ietf-tsvwg-natsupp]. The NAT implementer should refer to
[I-D.ietf-tsvwg-natsupp] for detailed descriptions of packet formats
and procedures.

8. Handling of Fragmented SCTP Packets

A NAT box MUST support IP reassembly of received fragmented SCTP
packets. The fragments may arrive in any order.

When an SCTP packet has to be fragmented by the NAT box and the IP
header forbids fragmentation a corresponding ICMP packet SHOULD be
sent.

9. Various Examples of NAT Traversals

9.1. Single-homed Client to Single-homed Server
The internal client starts the association with the external server

via a four-way-handshake. Host A starts by sending an INIT chunk.

/--\--\
S —— + S — + / \ S —— +
| Host A | <------ > | NAT | <------ > | Internet | <------ > | Host B |

Stewart, et al. Expires March 13, 2014 [Page 10]

Internet-Draft SCTP NAT September 2013

o + + + + +
NAT |Int |Int | Priv | Ext | Ext |

|
| VTag | Port | Addr | VTag | Port|
+ + +--- + + +

INIT[Initiate-Tag = 1234]
10.0.0.1:1 ------ >100.0.0.1:2
Ext-VTtag = 0

A NAT entry is created, the source address is substituted and the
packet is sent on:

NAT creates entry:

+ + + + + +
NAT | Int | Int | Priv | Ext | Ext |

| VTag | Port | Addr | VTag | Port|

+ + + + + +

| 1234 | 1 | 10.00.1] O | 2 |

+ + + + + +

INIT[Initiate-Tag = 1234]
101.0.0.1:1 >100.0.0.1:2
Ext-VTtag =0

Host B receives the INIT and sends an INIT-ACK with the NAT's
external address as destination address.

[--\/--\
S + S — + / \ R +
| Host A | <------ > | NAT | <------ > | Internet | <------ > | HostB |
[— + S — + \ / [— +

\--N\---/

INIT-ACK]Initiate-Tag = 5678]
101.0.0.1:1 < 100.0.0.1:2
Int-VTag = 1234

NAT updates entry:
+ + + + + +

NAT | Int | Int | Priv | Ext | Ext |

Stewart, et al. Expires March 13, 2014 [Page 11]

Internet-Draft SCTP NAT September 2013

| VTag | Port | Addr | VTag | Port]|

| 1234 | 1 | 10.0.0.1| 5678 | 2 |
+ + + + + +

INIT-ACK]Initiate-Tag = 5678]
10.0.0.1:1 <------ 100.0.0.1:2
Int-VTag = 1234

The handshake finishes with a COOKIE-ECHO acknowledged by a COOKIE-
ACK.

[--\/--\
E —— + S — + / \ S —— +
| Host A | <------ > | NAT | <------ > | Internet | <------ > | Host B |
[+ A + \ / f +

\--N\---/

COOKIE-ECHO
10.0.0.2:1 ------ >100.0.0.1:2
Ext-VTag = 5678

COOKIE-ECHO
101.0.0.1:1 >100.0.0.1:2
Ext-VTag = 5678

COOKIE-ACK
101.0.0.1:1 < 100.0.0.1:2
Int-VTag = 1234

COOKIE-ACK
10.0.0.1:1 <------ 100.0.0.1:2
Int-VTag = 1234

9.2. Single-homed Client to Multi-homed Server
The internal client is single-homed whereas the external server is

multi-homed. The client (Host A) sends an INIT like in the single-
homed case.

Stewart, et al. Expires March 13, 2014 [Page 12]

Internet-Draft SCTP NAT September 2013

o +
/--V--\ /-|Router 1]\
+ommee- + +omem- + / \] - + \ e +
| Host | <-----> | NAT | <-> | Internet | == =| Host |
| A -t N + /| B
+o-ee- + \--\--/ \-|Router 2|-/ +------ +
o +
Fommmme + + + + +

| Int | Int | Priv | Ext | Ext |
| VTag | Port | Addr | VTag | Port|
+ + + + + +

NAT

INIT[Initiate-Tag = 1234]
10.0.0.1:1 ---> 100.0.0.1:2
Ext-VTag =0

NAT creates entry:

+ + + + + +
NAT | Int [Int | Priv | Ext | Ext |

| VTag | Port | Addr | VTag | Port|
[+ + + + +
| 1234 | 1 | 10.001] O | 2 |

+ + + + + +

INIT[Initiate-Tag = 1234]
101.0.0.1:1 >100.0.0.1:2
Ext-VTag =0

The server (Host B) includes its two addresses in the INIT-ACK chunk,
which results in two NAT entries.

e +
/--\V--\ /-|Router 1|\
+ommee- + +----- + / \] A + \ +eeee- +
| Host | <-----> | NAT | <-> | Internet | == =| Host |
| A ot [\ e + /] B |
o + \--\--/ \-|Router 2|-/ +------ +
e +

Stewart, et al. Expires March 13, 2014 [Page 13]

Internet-Draft SCTP NAT September 2013

INIT-ACK]Initiate-tag = 5678, IP-Addr = 100.1.0.1]
101.0.0.1:1 < 100.0.0.1:2
Int-VTag = 1234

NAT does need to change the table for second address:

+ + + + + +
NAT | Int | Int | Priv | Ext | Ext |
| VTag | Port | Addr | VTag | Port|
+ + + + + +
| 1234 | 1 | 10.0.0.1| 5678 | 2 |
+ + + + + +

INIT-ACK]Initiate-Tag = 5678]
10.0.0.1:1 <--- 100.0.0.1:2
Int-VTag = 1234

The handshake finishes with a COOKIE-ECHO acknowledged by a COOKIE-
ACK.

R +
[--V--\" /-|Router 1|\
S — + S — + / WY S S—— S Y e — +
| Host | <-----> | NAT | <-> | Internet | == =| Host |
| A ot N + /] B
+oee + \--\--/ \-|Router 2|-/ +------ +
R +

COOKIE-ECHO
10.0.0.1:1 ---> 100.0.0.1:2
ExtVTag = 5678

COOKIE-ECHO
101.0.0.1:1 >100.0.0.1:2
Ext-VTag = 5678

COOKIE-ACK
101.0.0.1:1 < 100.0.0.1:2
Int-VTag = 1234

Stewart, et al. Expires March 13, 2014 [Page 14]

Internet-Draft SCTP NAT September 2013

COOKIE-ACK
10.0.0.1:1 <--- 100.0.0.1:2
Int-VTag = 1234

9.3. Multihomed Client and Server

The client (Host A) sends an INIT to the server (Host B), but does
not include the second address.

/-] NAT 1 |-\ [--\--\
[— E Y A S—— + \ / L W ——— +
| Host |=== ====| Internet |====| Host B |
| A\ +-me + [\ e +
+omeeee + \-|NAT 2 |-/ \--N\-/

+ + + + + +
NAT1 | Int | Int | Priv | Ext | Ext |
| VTag | Port | Addr | VTag | Port|
+ + +--- + + +

INIT[Initiate-Tag = 1234]
10.0.0.1:1 -------- >100.0.0.1:2
Ext-VTag =0

NAT 1 creates entry:

+ + + + + +
NAT1 | Int | Int | Priv | Ext | Ext |
| VTag | Port | Addr | VTag | Port]|

| 1234 | 1 | 10.0.01] O | 2 |
+ + + + + +

INIT[Initiate-Tag = 1234]
101.0.0.1:1 >100.0.0.1:2
ExtVTag =0

Stewart, et al. Expires March 13, 2014 [Page 15]

Internet-Draft SCTP NAT September 2013

Host B includes its second address in the INIT-ACK, which results in
two NAT entries in NAT 1.

ommmeee +
[-=-=---- | NAT 1 |-------- \ [--\--\
R — + / R — + \) LN S— +
| Host |=== ====| Internet |===| Host B |
| A\ oo + [\ [4 +
S + N\ | NAT 2 [-------- / \--N\--/
ommmeee +

INIT-ACK]Initiate-Tag = 5678, IP-Addr = 100.1.0.1]
101.0.0.1:1 < 100.0.0.1:2
Int-VTag = 1234

NAT 1 does not need to update the table for second address:

+ + + + + +
NAT1 | Int | Int | Priv | Ext | Ext |
| VTag | Port | Addr | VTag | Port|
+ + + + + +
| 1234 | 1 | 10.0.0.1| 5678 | 2 |
+ + + + + +

INIT-ACK]Initiate-Tag = 5678]
10.0.0.1:1 <--------- 100.0.0.1:2
Int-VTag = 1234

The handshake finishes with a COOKIE-ECHO acknowledged by a COOKIE-
ACK.

R +
[-=-=--- | NAT 1 |-------- \ [--\/--\
S — + |/ S + \)/ L R S—— +
| Host |=== ====| Internet |===| Host B |
| A\ +ommeee + [\ R +
RS W | NAT 2 |-------- I \-N\--/
R +

COOKIE-ECHO

Stewart, et al. Expires March 13, 2014 [Page 16]

Internet-Draft SCTP NAT September 2013

10.0.0.1:1 -------- >100.0.0.1:2
Ext-VTag = 5678
COOKIE-ECHO
101.0.0.1:1 ---------m-mmm - >100.0.0.1:2

Ext-VTag = 5678

COOKIE-ACK
101.0.0.1:1 <----m-mmmmmmmmmee- 100.0.0.1:2
Int-VTag = 1234

COOKIE-ACK
10.0.0.1:1 <------- 100.0.0.1:2
Int-VTag = 1234

Host A announces its second address in an ASCONF chunk. The address
parameter contains an undefined address (0) to indicate that the

source address should be added. The lookup address parameter within
the ASCONF chunk will also contain the pair of VTags (external and
internal) so that the NAT may populate its table completely with this

single packet.

B — +
[-=-mn-- | NAT 1 |-------- \ /--\/--\
S — + / S — + \] L S— +
| Host |=== ====| Internet |===| Host B |
| A\ oo + [\ T +
RS M- | NAT 2 [-------- I\
B — +

ASCONF [ADD-1P=0.0.0.0, INT-VTag=1234, Ext-VTag = 5678]
10.1.0.1:1 -------- >100.1.0.1:2
Ext-VTag = 5678

NAT 2 creates complete entry:

NAT2 | Int | Int | Priv | Ext | Ext |
| VTag | Port | Addr | VTag | Port]|
+ + + + + +
| 1234 | 1 | 10.1.0.1| 5678 | 2 |

Stewart, et al. Expires March 13, 2014 [Page 17]

Internet-Draft SCTP NAT September 2013

ASCONF [ADD-IP,Int-VTag=1234, Ext-VTag = 5678]
101.1.0.1:1 >100.1.0.1:2
Ext-VTag = 5678

ASCONF-ACK
101.1.0.1:1 < 100.1.0.1:2
Int-VTag = 1234

ASCONF-ACK
10.1.0.1:1 <----- 100.1.0.1:2
Int-VTag = 1234

9.4. NAT Loses lts State

Association is already established between Host A and Host B, when
the NAT loses its state and obtains a new public address. Host A
sends a DATA chunk to Host B.

[--\/--\
[+ B + / \ f +
| Host A | <---------- > | NAT | <---->| Internet | <---->| Host B |
R + B + \ / E +
\--N\--/
+ + + + + +

NAT | Int | Int | Priv | Ext | Ext |
| VTag | Port | Addr | VTag | Port|

+ + + + + +
| 1234 | 1 | 10.0.0.1| 5678 | 2 |
+ + + + + +
DATA
10.0.0.1:1 ---------- >100.0.0.1:2

Ext-VTag = 5678
The NAT box cannot find entry for the association. It sends ERROR
message with the M-Bit set and the cause "NAT state missing".

J--V/=-\

Stewart, et al. Expires March 13, 2014 [Page 18]

Internet-Draft SCTP NAT September 2013

Fommeeee- + +---e- + / \ oo +
| Host A | <---------- > | NAT | <---->| Internet | <----> | Host B |
[— + B — + \ / [— +

\--N\--/

ERROR [M-Bit, NAT state missing]
10.0.0.1:1 <---------- 100.0.0.1:2
Ext-VTag = 5678

On reception of the ERROR message, Host A sends an ASCONF chunk
indicating that the former information has to be deleted and the
source address of the actual packet added.

[--\/--\
E —— + S — + / \ S —— +
| Host A | <---------- > | NAT | <---->| Internet | <----> | Host B |
[+ B + \ / f +

\--N\--/

ASCONF [ADD-IP,DELETE-IP,Int-VTag=1234, Ext-VTag = 5678]
10.0.0.2:1 ---------- >100.1.0.1:2
Ext-VTag = 5678

[+ + + + +
NAT | Int | Int | Priv | Ext | Ext |

| VTag | Port | Addr | VTag | Port|

+ + + + + +

| 1234 | 1 | 10.0.0.1| 5678 | 2 |

+
T

ASCONF [ADD-IP,DELETE-IP,Int-VTag=1234, Ext-VTag = 5678]
102.1.0.1:1 —----m-mmmmmmmm - >100.1.0.1:2
Ext-VTag = 5678

Host B adds the new source address and deletes all former entries.

[--\/--\
[+ B + / \ f +
| Host A | <---------- > | NAT | <---->| Internet | <---->| Host B |
R + B + \ / E +

\--N\--/

Stewart, et al. Expires March 13, 2014 [Page 19]

Internet-Draft SCTP NAT September 2013

ASCONF-ACK
102.1.0.1:1 <-------m-mmmmmemee- 100.1.0.1:2
Int-VTag = 1234

ASCONF-ACK
10.1.0.1:1 <---------- 100.1.0.1:2
Int-VTag = 1234

DATA
10.0.0.1:1 ---------- >100.0.0.1:2
Ext-VTag = 5678

102.1.0.1:1 -------mmmmmmmemee- >100.1.0.1:2
Ext-VTag = 5678

9.5. Peer-to-Peer Communication

If two hosts are behind NATS, they have to get knowledge of the
peer’s public address. This can be achieved with a so-called
rendezvous server. Afterwards the destination addresses are public,
and the association is set up with the help of the INIT collision.

The NAT boxes create their entries according to their internal peer’s
point of view. Therefore, NAT A’s Internal-VTag and Internal-Port
are NAT B’s External-VTag and External-Port, respectively. The
naming of the verification tag in the packet flow is done from the
sending peer’s point of view.

Internal | External External | Internal

| 1--\---\ |
R S — + |/ L S—— I +
| Host A |<--->| NAT A |<-->| Internet |<-->| NAT B |<--->| Host B |
E —— R — + \ D S I — +

| \--N\---/ |
NAT-Tables

+ + + + + +

NATA | Int | Int | Priv | Ext | Ext |
| VTag | Port | Addr | VTag | Port]|

+ + + + + +
NATB | Int | Int | Priv | Ext | Ext |
| v-tag | port | addr | v-tag | port|

Stewart, et al. Expires March 13, 2014 [Page 20]

Internet-Draft SCTP NAT September 2013

+ + + + + +

INIT[Initiate-Tag = 1234]
10.0.0.1:1 --> 100.0.0.1:2
Ext-VTag =0

NAT A creates entry:

+ + + + + +
NATA | Int | Int | Priv | Ext | Ext |

| VTag | Port | Addr | VTag | Port|

+ + + + + +

| 1234 | 1 | 10.0.01] O | 2 |
+ + + + + +

INIT[Initiate-Tag = 1234]
101.0.0.1:1 ------m-mmmmmme- >100.0.0.1:2
Ext-VTag =0

NAT B processes INIT, but cannot find an entry. The SCTP packet is
silently discarded and leaves the NAT table of NAT B unchanged.

+ + + + + +
NATB | Int | Int | Priv | Ext | Ext |

| VTag | Port | Addr | VTag | Port|

+ + + + + +

Now Host B sends INIT, which is processed by NAT B. Its parameters
are used to create an entry.

Internal | External External | Internal
| [--\J---\ |
S —— S I —— + |/ LN S—— S S —— +
| Host A |<--->| NAT A |<-->| Internet |<-->| NAT B |<--->| Host B |
S E I m— + \ R I —— +
| \--N\---/ |

INIT[Initiate-Tag = 5678]
101.0.0.1:1 <-- 10.1.0.1:2
Ext-VTag =0

Stewart, et al. Expires March 13, 2014 [Page 21]

Internet-Draft SCTP NAT September 2013

+ + + + + +
NATB | Int | Int | Priv | Ext | Ext |
| VTag | Port | Addr | VTag | Port|
+ + + + + +
| 5678 | 2 | 10.1.01] O | 1 |
+ + + + + +

INIT[Initiate-Tag = 5678]
101.0.0.1:1 <---------m-m--- 100.0.0.1:2
Ext-VTag =0

NAT A processes INIT. As the outgoing INIT of Host A has already
created an entry, the entry is found and updated:

Internal | External External | Internal
I [--\/---\ I|
[— e R — + L N S—— L S S +
| Host A |<--->| NAT A |<-->| Internet |<-->| NAT B |<--->| Host B |
S —— S I —— + \ D m— S S —— +
| \--N\---/ |

VTag != Int-VTag, but Ext-VTag == 0, find entry.
[—— + + + + +
NATA | Int | Int | Priv | Ext | Ext |
VTag | Port | Addr | VTag | Port|
+ + + + +
1234 | 1 | 10.0.0.1| 5678 | 2 |

3 +
T T

|
+
|
+

INIT[Initiate-tag = 5678]
10.0.0.1:1 <-- 100.0.0.1:2
Ext-VTag =0

Host A send INIT-ACK, which can pass through NAT B:

Internal | External External | Internal
| I
| [--\[---\ |
R S — + |/ L S—— I +
| Host A |<--->| NAT A |<-->| Internet |<-->| NAT B |<--->| Host B |
E —— R — + \ D S I — +

Stewart, et al. Expires March 13, 2014 [Page 22]

Internet-Draft SCTP NAT September 2013

| \e-P\e-- |

INIT-ACK]Initiate-Tag = 1234]
10.0.0.1:1 -->; 100.0.0.1:2
Ext-VTag = 5678

INIT-ACK[Initiate-Tag = 1234]
101.0.0.1:1 =mermmmmemmeee >100.0.0.1:2
Ext-VTag = 5678

NAT B updates entry:

NATB | Int | Int | Priv | Ext | Ext |
| VTag | Port | Addr | VTag | Port]|
+ + + + + +
| 5678 | 2 | 10.1.0.1] 1234 | 1 |
+ + + + + +

INIT-ACK]Initiate-Tag = 1234]
101.0.0.1:1 -->10.1.0.1:2
Ext-VTag = 5678

The lookup for COOKIE-ECHO and COOKIE-ACK is successful.

Internal | External External | Internal
| [--\/---\ |
[— e R — + L W S—— L S S +
| Host A |<--->| NAT A |<-->| Internet |<-->| NAT B |<--->| Host B |
S —— S I —— + \ D m— S S —— +
| \--N\---/ |

COOKIE-ECHO
101.0.0.1:1 <--10.1.0.1:2
Ext-VTag = 1234

COOKIE-ECHO
101.0.0.1:1 <-------m-m-- 100.0.0.1:2
Ext-VTag = 1234

COOKIE-ECHO

10.0.0.1:1 <-- 100.0.0.1:2
Ext-VTag = 1234

Stewart, et al. Expires March 13, 2014 [Page 23]

Internet-Draft SCTP NAT September 2013

COOKIE-ACK
10.0.0.1:1 --> 100.0.0.1:2
Ext-VTag = 5678
COOKIE-ACK
101.0.0.1:1 ---------------- >100.0.0.1:2
Ext-VTag = 5678
COOKIE-ACK

101.0.0.1:1 -->10.1.0.1:2
Ext-VTag = 5678

10. IANA Considerations
This document requires no actions from IANA.

11. Security Considerations
State maintenance within a NAT is always a subject of possible Denial
Of Service attacks. This document recommends that at a minimum a NAT
runs a timer on any SCTP state so that old association state can be
cleaned up.

12. Acknowledgments
The authors wish to thank Jason But Bryan Ford, David Hayes, Alfred
Hines, Henning Peters, Timo Voelker, Dan Wing, and Qiaobing Xie for
their invaluable comments.

13. References

13.1. Normative References

[RFCO0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC4960] Stewart, R., "Stream Control Transmission Protocol", RFC
4960, September 2007.

[I-D.ietf-tsvwg-natsupp]

Stewart, et al. Expires March 13, 2014 [Page 24]

Internet-Draft SCTP NAT September 2013

Stewart, R., Tuexen, M., and I. Ruengeler, "Stream Control
Transmission Protocol (SCTP) Network Address Translation
Support", draft-ietf-tsvwg-natsupp-05 (work in progress),
February 2013.

13.2. Informative References

[RFC5735] Cotton, M. and L. Vegoda, "Special Use IPv4 Addresses”,
RFC 5735, January 2010.

Authors’ Addresses

Randall R. Stewart
Adara Networks
Chapin, SC 29036
us

Email: randall@lakerest.net

Michael Tuexen

Muenster University of Applied Sciences
Stegerwaldstrasse 39

48565 Steinfurt

DE

Email: tuexen@fh-muenster.de

Irene Ruengeler

Muenster University of Applied Sciences
Stegerwaldstrasse 39

48565 Steinfurt

DE

Email: i.ruengeler@fh-muenster.de

Stewart, et al. Expires March 13, 2014 [Page 25]

DCCP Working Group T. Phelan

Internet-Draft Sonus

Intended status: Standards Track G. Fairhurst

Expires: December 27, 2012 University of Aberdeen
C. Perkins

University of Glasgow
June 25, 2012

Datagram Congestion Control Protocol (DCCP) Encapsulation for NAT
Traversal (DCCP-UDP)
draft-ietf-dccp-udpencap-11

Abstract

This document specifies an alternative encapsulation of the Datagram
Congestion Control Protocol (DCCP), referred to as DCCP-UDP. This
encapsulation allows DCCP to be carried through the current
generation of Network Address Translation (NAT) middleboxes without
modification of those middleboxes. This document also updates the
SDP information for DCCP defined in RFC 5762.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on December 27, 2012.
Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents

Phelan, et al. Expires December 27, 2012 [Page 1]

Internet-Draft DCCP-UDP Encapsulation June 2012

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction 3
2. Terminologyc .. 4
3. DCCP-UDP 4
3.1. TheUDPHeader...................... 5
3.2. The DCCP GenericHeader 5
3.3. DCCP-UDP Checksum Procedures 6
3.3.1. Partial Checksums and the Minimum Checksum
Coverage Feature 7
3.4. Network Layer Options 8
3.5. Explicit Congestion Notification 8
3.6. ICMP handling for messages relating to DCCP-UDP 8
3.7. Path Maximum Transmission Unit Discovery 9
3.8. Usage of the UDP port by DCCP-UDP 9
3.9. Service Codes and the DCCP Port Registry 11
4. DCCP-UDP and Higher-Layer Protocols 11
5.1. Protocol Identification 12
5.2. Signalling Encapsulated DCCP Ports 13
5.3. Connection Management 14
5.4. Negotiating the DCCP-UDP encapsulation versus native
DCCP ... 14
5.5. Exampleof SDPuse.................... 15
6. Security Considerations 16
7. IANA Considerations 16
7.1. UDP Port Allocation 17
72. DCCPReset.......... ... 17
7.3. SDP Attribute Allocation 17
8. Acknowledgments 18
9. References, 18
9.1. Normative References 18
9.2. Informative References 18
Authors’ Addresses, 20

Phelan, et al. Expires December 27, 2012 [Page 2]

Internet-Draft DCCP-UDP Encapsulation June 2012

1. Introduction

The Datagram Congestion Control Protocol (DCCP) [RFC4340] is a
transport-layer protocol that provides upper layers with the ability

to use non-reliable congestion-controlled flows. The current
specification for DCCP specifies a direct native encapsulation in
IPv4 or IPv6 packets.

DCCP support has been specified for devices that use Network Address
Translation (NAT) or Network Address and Port Translation (NAPT)
[RFC5597]. However, there is a significant installed base of NAT/

NAPT devices that do not support RFC 5597. It is therefore useful to
have an encapsulation for DCCP that is compatible with this installed
base of NAT/NAPT devices that support [RFC4787], but do not support
RFC 5597. This document specifies that encapsulation, which is
referred to as DCCP-UDP. For convenience, the standard encapsulation
for DCCP [RFC4340] (including [RFC5596] as required) is referred to

as DCCP-STD.

The encapsulation described in this document may also be used as a
transition mechanism to enable support for DCCP in devices that
support UDP, but do not yet natively support DCCP. This also allows
the DCCP transport to be implemented within an application using
DCCP-UDP.

The document also updates the SDP specification for DCCP to convey
the encapsulation type. In this respect only, it updates the method
in [RFC5762].

The DCCP-UDP encapsulation specified in this document supports all of
the features contained in DCCP-STD, but with limited functionality
for partial checksums.

Network optimisations for DCCP-STP and UDP may need to be updated to
allow these optimisations to take advantage of DCCP-UDP.
Encapsulation with an additional UDP protocol header can complicate
or prevent inspection of DCCP header fields by equipment along the
network path in the case where multiple DCCP connections share the
same UDP 4-tuple. For example, routers that wish to identify DCCP
ports to perform Equal-Cost Multi-Path routing, ECMP, network devices
that wish to inspect DCCP ports to inform algorithms for sharing the
network load across multiple links; firewalls that wish to inspect

DCCP ports and service codes to inform algorithms that implement
access rules; media gateways that inspect SDP information to derive
characteristics of the transport and session, etc.

Phelan, et al. Expires December 27, 2012 [Page 3]

Internet-Draft DCCP-UDP Encapsulation June 2012

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

3. DCCP-UDP

The basic approach is to insert a UDP [RFC0768] header between the IP
header and the DCCP packet. Note that this is not a tunneling
approach. The IP addresses of the communicating end systems are
carried in the IP header. The method does not embed additional IP
addresses.

The method is designed to support use when these addresses are
modified by a device that implements NAT/NAPT. A NAT translates the
IP addresses, which impacts the transport-layer checksum. A NAPT
device may also translate the port values (usually the source port).

In both cases, the outer transport header that includes these values
would need to be updated by the NAT/NAPT.

A device offering or using DCCP services via DCCP-UDP encapsulation
listens on a UDP port (default port, XXX IANA PORT XXX), or may bind
to a specified port utilising out-of-band signalling, such as the

Session Description Protocol (SDP). The DCCP-UDP server accepts
incoming packets over the UDP transport and passes the received
packets to the DCCP protocol module, after removing the UDP
encapsulation.

A DCCP implementation endpoint may simultaneously provide services
over any or all combinations of DCCP-STD and/or DCCP-UDP
encapsulations with IPv4 and/or IPv6.

The basic format of a DCCP-UDP packet is:

+ +
| IP Header (IPv4 or IPv6) | Variable length

| UDP Header | 8 bytes

+ +

| DCCP Generic Header | 12 or 16 bytes

+ +

| Additional (type-specific) Fields | Variable length (could be 0)
| DCCP Options | Variable length (could be 0)

+ +

| Application Data Area | Variable length (could be 0)

Phelan, et al. Expires December 27, 2012 [Page 4]

Internet-Draft DCCP-UDP Encapsulation June 2012

Section 3.8 describes usage of UDP ports. This includes
implementation of a DCCP-UDP encapsulation service as a daemon that
listens on a well-known port, allowing multiplexing of different DCCP
applications over the same port.

3.1. The UDP Header
The format of the UDP header is specified in [RFC0768]:
0 1 2 3

01234567890123456789012345678901
S e s St S S U S S S S S e e S e

| Source Port | Dest Port |
Fot-totot ottt ottt ottt ottt ottt ottt bbb+
| Length | Checksum |

e e T L s s o R SR S
For DCCP-UDP, the fields are interpreted as follows:
Source and Dest(ination) Ports: 16 bits each
These fields identify the UDP ports on which the source and
destination (respectively) of the packet are listening for
incoming DCCP-UDP packets. The UDP port values do not identify
the DCCP source and destination ports.
Length: 16 bits
This field is the length of the UDP datagram, including the UDP
header and the payload (for DCCP-UDP, the payload is a DCCP-UDP
datagram).
Checksum: 16 bits
This field is the Internet checksum of a network-layer
pseudoheader and Length bytes of the UDP packet [RFC0768]. The

UDP checksum MUST NOT be zero for a UDP packet that carries DCCP-
UDP.

3.2. The DCCP Generic Header
The DCCP Generic Header [RFC4340] takes two forms, one with long

sequence numbers (48 bits) and the other with short sequence numbers
(24 bits).

Phelan, et al. Expires December 27, 2012 [Page 5]

Internet-Draft DCCP-UDP Encapsulation June 2012

0 1 2 3
01234567890123456789012345678901
S e s St S S U S S S S S e e S e

| Source Port | Dest Port |

Fot-totot ottt ottt ottt ottt ottt ottt bbb+
| Data Offset | CCVal | CsCov | Checksum |

e S L L A T R R N e o ot S
| 1 IX] I :

| Res | Type |=| Reserved | Sequence Number (high bits) .

I I Y |

Fot-totot ottt ottt ottt ottt ottt ottt bbb+
| Sequence Number (low bits) |
e S L L A T R R N e o ot S

The Generic DCCP Header with long sequence numbers [RFC4340]
0 1 2 3

01234567890123456789012345678901
e ST e S O S O S e SOt

| Source Port | Dest Port [

B ot e e S S S S e e
| Data Offset | CCVal | CsCov | Checksum |
L S L 1
| 1 IX] |

| Res | Type |=| Sequence Number (low bits) |

|1 10 I

B ot e e S S S S e e
The Generic DCCP Header with short sequence numbers [RFC4340]

All generic header fields, except for the Checksum field, have the
meaning specified in [RFC4340] updated by [RFC5596].

Section 3.8 describes how a DCCP-UDP implementation treats UDP and
DCCP ports.

3.3. DCCP-UDP Checksum Procedures

DCCP-UDP employs a checksum at the UDP level and eliminates the use
of the DCCP checksum. This approach was chosen to enable use of
current NAT/NATP traversal methods developed for UDP. Such methods
will generally be unaware whether DCCP is being encapsulated and
hence do not update the inner checksum in the DCCP header. Standard
DCCP requires protection of the DCCP header fields, this justifies

any processing overhead incurred from calculating the UDP checksum.

In addition, UDP NAT traversal does not support partial checksums.
Although this is still permitted end-to-end in the encapsulated DCCP

Phelan, et al. Expires December 27, 2012 [Page 6]

Internet-Draft DCCP-UDP Encapsulation June 2012

datagram, links along the path will treat these as UDP packets and
can not enable special partial checksum processing.

DCCP-UDP does not update or modify the operation of UDP. The UDP
transport protocol is used in the following way:

For DCCP-UDP, the function of the DCCP Checksum field is performed by
the UDP checksum field. On transmit, the DCCP Checksum field SHOULD
be set to zero. On receive, the DCCP Checksum field MUST be ignored.

The UDP checksum MUST NOT be zero for a UDP packet that is sent using
DCCP-UDP. If the received UDP Checksum field is zero, the packet
MUST be dropped [RFC5405].

If the UDP Length field is less than 20 (the UDP Header length and
minimum DCCP-UDP header length), the packet MUST be dropped
[RFC5405]..

If the UDP Checksum field, computed using standard UDP methods, is
invalid, the packet MUST be dropped [RFC5405].

If the UDP Length field in a received packet is less than the length

of the UDP header plus the entire DCCP-UDP header (including the
generic header and type-specific fields and options, if present), or
the UDP Length field is greater than the length of the packet from
the beginning of the UDP header to the end of the packet, the packet
MUST be dropped.

3.3.1. Partial Checksums and the Minimum Checksum Coverage Feature

This document describes an encapsulation for DCCP that uses the UDP
transport. It requires the UDP checksum to be enabled. This
checksum provides coverage of the entire encapsulated DCCP datagram.

DCCP-UDP supports the syntax of partial checksums. It also supports
negotiation of the Minimum Checksum Coverage feature and settings of
the CsCov field. However, the UDP checksum field in DCCP-UDP always
covers the entire DCCP datagram and the DCCP checksum is ignored on
receipt. An application that enables the partial checksums feature

in the DCCP Module will therefore experience a service that is
functionally identical to using full DCCP checksum coverage. This is

also the service that the application would have received if it had

used a network path that did not provide optimised processing for

DCCP partial checksums.

Phelan, et al. Expires December 27, 2012 [Page 7]

Internet-Draft DCCP-UDP Encapsulation June 2012

3.4. Network Layer Options

A DCCP-UDP implementation MAY transfer network-layer options intended
for DCCP to the network-layer header of the encapsulating UDP packet.

A DCCP-UDP endpoint that receives IP-options for the encapsulating
UDP packet MAY forward these to the DCCP protocol module. If the
endpoint forwards a specific network layer option to the DCCP module,
it MUST also forward all subsequent packets with this option.
Consistent forwarding is essential for correct operation of many end-
to-end options.

3.5. Explicit Congestion Notification

A DCCP-UDP endpoint SHOULD follow the procedures of DCCP-STD section
12 by setting the ECN fields in the IP Headers of outgoing packets

and examining the values received in the ECN fields of incoming IP

packets, relaying any packet markings to the DCCP module.

Implementations that do not support ECN MUST follow the procedures in
DCCP-STD section 12.1 with regard to implementations that are not ECN
capable.

3.6. ICMP handling for messages relating to DCCP-UDP

To allow ICMP messages to be demultiplexed by the receiving endpoint,
part of the original packet that resulted in the message is included

in the payload of the ICMP error message. The receiving endpoint can
therefore use this information to associate the ICMP error with the
transport protocol instance that resulted in the ICMP message. When
DCCP-UDP is used, the error message and the payload of the ICMP error
message relate to the UDP transport.

DCCP-UDP endpoints SHOULD forward ICMP messages relating to a UDP
packet that carries a DCCP-UDP to the DCCP module. This may imply
translation of the payload of the ICMP message into a form that is
recognised by the DCCP stack. [RFC5927] describes precautions that

are desirable before TCP acts on the receipt of an ICMP message.

Similar precautions are desirable prior to forwarding by DCCP-UDP to

the DCCP module.

The minimal length ICMP error message generated in response to
processing a UDP Datagram only identifies the Source UDP Port and
Destination UDP Port. This ICMP message does not carry sufficient
information to discover the encapsulated DCCP Port values. A DCCP-
UDP endpoint that supports multiple DCCP connections over the same
pair of UDP ports (see section Section 3.8) may not therefore be able
to associate an ICMP message with a unique DCCP-UDP connection.

Phelan, et al. Expires December 27, 2012 [Page 8]

Internet-Draft DCCP-UDP Encapsulation June 2012

3.7. Path Maximum Transmission Unit Discovery

DCCP-UDP implementations MUST follow DCCP-STD [RFC4340], section 14
with regard to determining the maximum packet size and the use of

Path Maximum Transmission Unit Discovery (PMTUD). This requires the
processing of ICMP Destination Unreachable messages with a Code that
indicates that an unfragmentable packet was too large to be forwarded

(a "Datagram Too Big" message), as defined in RFC 4340.

An effect of encapsulation is to incur additional datagram overhead.
This will reduce the Maximum Packet Size (MPS) at the DCCP level.

3.8. Usage of the UDP port by DCCP-UDP

A DCCP-UDP server (that is, an initially passive endpoint that wishes

to receive DCCP-Request packets [RFC4340] over DCCP-UDP) listens for
connections on one or more UDP ports. UDP port number XXX IANA PORT
XXX has been reserved as the default listening UDP port for a DCCP-

UDP server. Some NAT/NAPT topologies may require using a non-default
listening port.

The purpose of this IANA-assigned port is for the operating system or

a framework to receive and process DCCP-UDP datagrams for delivery to
the DCCP module (e.g. to support a system-wide DCCP-UDP daemon
serving multiple DCCP applications or a DCCP-UDP server placed behind
a firewall).

An application-specific implementation SHOULD use an ephemeral port
and advertise this port using outside means, e.g. SDP. This method

of implementation SHOULD NOT use the IANA-assigned port to listen for
incoming DCCP-UDP packets.

A DCCP-UDP client provides UDP source and destination ports as well
as DCCP source and destination ports at connection initiation time.

A client SHOULD ensure that each DCCP connection maps to a single
DCCP-UDP connection by setting the UDP source port. Choosing a
distinct source UDP port for each distinct DCCP connection ensures
that UDP-based flow identifiers differ whenever DCCP-based flow
identifiers differ. Specifically, two connections with different

<source IP address, source DCCP port, destination IP address,
destination DCCP port> DCCP 4-tuples will have different <source IP
address, source UDP port, destination IP address, destination UDP
port> UDP 4-tuples.

A DCCP-UDP server SHOULD accept datagrams from any UDP source port.
There is a risk that the same DCCP source port number could be used

by two endpoints each behind a NAPT. A DCCP-UDP server MUST
therefore demultiplex a DCCP-UDP flow using both the UDP source and

Phelan, et al. Expires December 27, 2012 [Page 9]

Internet-Draft DCCP-UDP Encapsulation June 2012

destination port numbers and the encapsulated DCCP ports. This
ensures than an active DCCP connection is uniquely identified by the
6-tuple <source IP address, source UDP port, source DCCP port,
destination IP address, destination UDP port, destination DCCP port>.
(The active state of a DCCP connection is defined in Section 3.8: A
DCCP connection becomes active following transmission of a DCCP-
Request, and become inactive after sending a DCCP-Close.)

This demultiplexing at a DCCP-UDP endpoint occurs in two stages:

1) In the first stage, DCCP-UDP packets are demultiplexed using the
UDP 4-tuple: <source IP address, source UDP port, destination IP
address, destination UDP port>.

2) In the second stage, a receiving endpoint MUST ensure that two
independent DCCP connections that were multiplexed to the same UDP
4-tuple are not associated with the same connection in the DCCP
module. The endpoint therefore needs to keep state for the set of
active DCCP-UDP endpoints using each combination of a UDP 4-tuple:
<source IP address, source UDP port, destination IP address,
destination UDP port>. Two DCCP endpoint methods are specified. A
DCCP-UDP implementation MUST implement exactly one of these:

0 The DCCP server may accept only one active 6-tuple at any one time
for a given UDP 4-tuple. In this method, DCCP-UDP packets that do
not match an active 6-tuple MUST NOT be passed to the DCCP module
and the DCCP Server SHOULD send a DCCP-Reset with with Reset Code
XXX IANA Port Reuse XXX, "Encapsulated Port Reuse". An endpoint
that receives a DCCP-Reset with this reset code will clear its
connection state, but MAY immediately try again using a different
4-tuple. This provides protection should the same UDP 4-tuple be
re-used by multiple DCCP connections, ensuring that only one DCCP
connection is established at one time.

0 The DCCP server may support multiple DCCP connections over the
same UDP 4-tuple. In this method, the endpoint MUST then
associate each 6-tuple with a single DCCP connection. If an
endpoint is unable to demultiplex the 6-tuple (e.g. due to
internal resource limits), it MUST discard DCCP-UDP packets that
do not match an active 6-tuple instead of forwarding them to the
DCCP module. The DCCP endpoint MAY send a DCCP-Reset with Reset
Code XXX IANA Port Reuse XXX, "Encapsulated Port Reuse",
indicating the connection has been closed, but may be retried
using a different UDP 4-tuple.

Phelan, et al. Expires December 27, 2012 [Page 10]

Internet-Draft DCCP-UDP Encapsulation June 2012

3.9. Service Codes and the DCCP Port Registry

This section clarifies the usage of DCCP Service Codes and the
registration of server ports by DCCP-UDP. The section is not
intended to update the procedures for allocating Service Codes or
server ports.

There is one Service Code registry and one DCCP port registration
that apply to all combinations of encapsulation and IP version. A
DCCP Service Code specifies an application using DCCP regardless of
the combination of DCCP encapsulation and IP version. An application
may choose not to support some combinations of encapsulation and IP
version, but its Service Code will remain registered for those
combinations and the Service Code must not be used by other
applications. An application should not register different Service
Codes for different combinations of encapsulation and IP version.
[RFC5595] provides additional information about DCCP Service Codes.

Similarly, a DCCP port registration is applicable to all combinations
of encapsulation and IP version. Again, an application may choose
not to support some combinations of encapsulation and IP version on
its registered DCCP port, although the port will remain registered

for those combinations. Applications should not register different
DCCP ports just for the purpose of using different combinations of
encapsulation.

4. DCCP-UDP and Higher-Layer Protocols

The encapsulation of a higher-layer protocol within DCCP MUST be the
same for both DCCP-STD and DCCP-UDP. Encapsulation of Datagram
Transport Layer Security (DTLS) over DCCP is defined in [RFC5238] and
RTP over DCCP is defined in [RFC5762]. This document therefore does
not update these encapsulations when using DCCP-UDP.

5. Signaling the Use of DCCP-UDP

Applications often signal transport connection parameters through

outside means, such as SDP. Applications that define such methods

for DCCP MUST define how the DCCP encapsulation is chosen, and MUST
allow either encapsulation to be signaled. Where DCCP-STD and DCCP-
UDP are both supported, DCCP-STD SHOULD be preferred.

The Session Description Protocol (SDP) [RFC4566] and the offer/answer
model [RFC3264] can be used to negotiate DCCP sessions, and [RFC5762]
defines SDP extensions for signalling the use of an RTP session

running over DCCP connections. However, since [RFC5762] predates

Phelan, et al. Expires December 27, 2012 [Page 11]

Internet-Draft DCCP-UDP Encapsulation June 2012

this document, it does not define a mechanism for signalling that the
DCCP-UDP encapsulation is to be used. This section updates [RFC5762]
to describe how SDP can be used to signal RTP sessions running over
the DCCP-UDP encapsulation.

The new SDP support specified in this section is expected to be

useful when the offering party is on the public Internet, or in the

same private addressing realm as the answering party. In this case,

the DCCP-UDP server has a public address. The client may either have
a public address or be behind a NAT/NAPT. This scenario has the
potential to be an important use-case. Some other NAT/NAPT
topologies may result in the advertised port being unreachable via

the NAT/NAPT.

5.1. Protocol Identification
SDP uses a media ("m=") line to convey details of the media format
and transport protocol used. The ABNF syntax [RFC5124] of a media
line for DCCP is as follows (from [RFC4566]):
media-field = %x6d "=" media SP port ["/" integer] SP proto

1*(SP fmt) CRLF

The proto field denotes the transport protocol used for the media,
while the port indicates the transport port to which the media is
sent, following [RFC5762]. This document defines the following five
values of the proto field to indicate media transported using DCCP-
UDP encapsulation:

UDP/DCCP

UDP/DCCP/RTP/AVP

UDP/DCCP/RTP/SAVP

UDP/DCCP/RTP/AVPF

UDP/DCCP/RTP/SAVPF
The "UDP/DCCP" protocol identifier is similar to the "DCCP" protocol
identifier defined in [RFC5762] and denotes the DCCP transport
protocol encapsulated in UDP, but not its upper-layer protocol.
The "UDP/DCCP/RTP/AVP" protocol identifier refers to RTP using the

RTP Profile for Audio and Video Conferences with Minimal Control
[RFC3551] running over the DCCP-UDP encapsulation.

Phelan, et al. Expires December 27, 2012 [Page 12]

Internet-Draft DCCP-UDP Encapsulation June 2012

The "UDP/DCCP/RTP/SAVP" protocol identifier refers to RTP using the
Secure Real-time Transport Protocol [RFC3711] running over the DCCP-
UDP encapsulation.

The "UDP/DCCP/RTP/AVPF" protocol identifier refers to RTP using the
Extended RTP Profile for RTCP-based Feedback [RFC4585] running over
the DCCP-UDP encapsulation.

The "UDP/DCCP/RTP/SAVPF" protocol identifier refers to RTP using the
Extended Secure RTP Profile for RTCP-based Feedback [RFC5124] running
over the DCCP-UDP encapsulation.

The fmt value in the "m="line is used as described in [RFC5762].

The port number specified in the "m=" line indicates the UDP port

that is used for the DCCP-UDP encapsulation service. The DCCP port
number MUST be sent using an associated "a=dccp-port:" attribute, as
described in Section 5.2.

The use of ports with DCCP-UDP encapsulation is described further in
Section 3.8.

5.2. Signalling Encapsulated DCCP Ports

When using DCCP-UDP, the UDP port used for the encapsulation is

signalled using the SDP "m="line. The DCCP ports MUST NOT be

included in the "m="line, but are instead signalled using a new SDP

attribute ("dccp-port") defined according to the following ABNF:
dccp-port-attr = %x61 "=dccp-port:" dccp-port

dccp-port = 1*DIGIT

where DIGIT is as defined in [RFC5234]. This is a media level
attribute, that is not subject to the charset attribute. The
"a=dccp-port:" attribute MUST be included when the protocol
identifiers described in Section 5.1 are used.

The use of ports with DCCP-UDP encapsulation is described further in
Section 3.8.

o If the "a=rtcp:" attribute [RFC3605] is used, then the signalled
port is the DCCP port used for RTCP.

o If the "a=rtcp-mux" attribute [RFC5761] is negotiated, then RTP

and RTCP are multiplexed onto a single DCCP port, otherwise
separate DCCP ports are used for RTP and RTCP [RFC5762].

Phelan, et al. Expires December 27, 2012 [Page 13]

Internet-Draft DCCP-UDP Encapsulation June 2012

In each case, only a single UDP port is used for the DCCP-UDP
encapsulation.

o If the "a=rtcp-mux" attribute is not present, then the second of
the two demultiplexing methods described in Section 3.8 MUST be
implemented, otherwise the second DCCP connection for the RTCP
flow will be rejected. For this reason, using "a=rtcp-mux" is
RECOMMENDED when using RTP over DCCP-UDP.

5.3. Connection Management

The "a=setup:" attribute is used in a manner compatible with
[RFC5762] Section 5.3 to indicate which of the DCCP-UDP endpoints
should initiate the DCCP-UDP connection establishment.

5.4. Negotiating the DCCP-UDP encapsulation versus native DCCP

An endpoint that supports both native DCCP and the DCCP-UDP
encapsulation may wish to signal support for both options in an SDP
offer, allowing the answering party the option of using native DCCP
where possible, while falling back to the DCCP-UDP encapsulation
otherwise.

An approach to doing this might be to include candidates for the
DCCP-UDP encapsulation and native DCCP into an Interactive
Connectivity Establishment (ICE) [RFC5245] exchange. Since DCCP is
connection-oriented, these candidates would need to be encoded into
ICE in a manner analogous to TCP candidates defined in [RFC6544].
Both active and passive candidates could be supported for native DCCP

and DCCP-UDP encapsulation, as may DCCP simultaneous open [RFC5596].

In choosing local preference values, it may make sense to to prefer
DCCP-UDP over native DCCP in cases where low connection setup time is
important, and to prioritise native DCCP in cases where low overhead

is preferred (on the assumption that DCCP-UDP is more likely to work
through legacy NAT, but has higher overhead). The details of this
encoding into ICE are left for future study.

While ICE is appropriate for selecting basic use of DCCP-UDP versus
DCCP-STD, it may not be appropriate for negotiating different RTP
profiles with each transport encapsulation. The SDP Capability
Negotiation framework [RFC5939] may be be more suitable. Section 3.7
of RFC 5939 specifies how to provide attributes and transport

protocols as capabilities and negotiate them using the framework .The
details of the use of SDP Capability Negotiation with DCCP are left

for future study.

Phelan, et al. Expires December 27, 2012 [Page 14]

Internet-Draft DCCP-UDP Encapsulation June 2012

5.5. Example of SDP use

The example below shows an SDP offer, where an application signals
support for DCCP-UDP:
v=0
o=alice 1129377363 1 IN IP4 192.0.2.47
S=-
c=IN IP4 192.0.2.47
t=00
m=video 50234 UDP/DCCP/RTP/AVP 99
a=rtpmap:99 h261/90000
a=dccp-service-code:SC=x52545056
a=dccp-port:5004
a=rtcp:5005
a=setup:passive
a=connection:new

The answering party at 192.0.2.128 receives this offer and responds
with the following answer:
v=0
0o=bob 1129377364 1 IN 1P4 192.0.2.128
S=-
c=IN1P4 192.0.2.128
t=00
m=video 40123 UDP/DCCP/RTP/AVP 99
a=rtpmap:99 h261/90000
a=dccp-service-code:SC:RTPV
a=dccp-port:9
a=setup:active
a=connection:new

Note that the "m="line in the answer includes the UDP port number of
the encapsulation service. The DCCP service code is set to "RTPV",
signalled using the "a=dccp-service-code" attribute [RFC5762]. The
"a=dccp-port:" attribute in the answer is set to 9 (the discard port)

in the usual manner for an active connection-oriented endpoint.

The answering party will then attempt to establish a DCCP-UDP
connection to the offering party. The connection request will use an
ephemeral DCCP source port and DCCP destination port 5004. The UDP
packet encapsulating that request will have UDP source port 40123 and
UDP destination port 50234.

Phelan, et al. Expires December 27, 2012 [Page 15]

Internet-Draft DCCP-UDP Encapsulation June 2012

6. Security Considerations

DCCP-UDP provides all of the security risk-mitigation measures
present in DCCP-STD, and also all of the security risks. It does not
maintain additional state at the encapsulation layer.

The tunnel encapsulation recommends processing of ICMP messages
received for packets sent using DCCP-UDP and translation to allow use
by DCCP. [RFC5927] describes precautions that are desirable before
TCP acts on receipt of ICMP messages. Similar precautions are
desirable for endpoints processing ICMP for DCCP-UDP.The purpose of
DCCP-UDP is to allow DCCP to pass through NAT/NAPT devices, and
therefore it exposes DCCP to the risks associated with passing

through NAT devices. It does not create any new risks with regard to
NAT/NAPT devices.

DCCP-UDP may also allow DCCP applications to pass through existing
firewall devices using rules for UDP, if the administrators of the

devices so choose. A simple use may either allow all DCCP
applications or allow none.

A firewall that interprets this specification could inspect the
encapsulated DCCP header to filter based on the inner DCCP header
information. Full control of DCCP connections by applications will
require enhancements to firewalls, as discussed in [RFC4340] and
related RFCs (e.g. [RFC5595]).

Datagram Transport Layer Security (DTLS) TLS provides mechanisms that
can be used to provide security protection for the encapsulated DCCP
packets. DTLS may be used in two ways:

o Individual DCCP connections may be protected in the same way that
DTLS is used with native DCCP [RFC5595]. This does not encrypt
the UDP transport header added by DCCP-UDP.

0 This specification also permits the use of DTLS with the UDP
transport that encapsulates DCCP packets. When DTLS is used at
the encapsulation layer this protects the DCCP headers. This
prevents the headers from being inspected or updated by network
middleboxes (such as firewalls and NAPT). It also eliminates the
need for a spearate DTLS handshake for each DCCP connection.

7. IANA Considerations

This document requests IANA to make the allocations described in the
following sections.

Phelan, et al. Expires December 27, 2012 [Page 16]

Internet-Draft DCCP-UDP Encapsulation June 2012

7.1. UDP Port Allocation
IANA is requested to allocate a UDP port for the DCCP-UDP service.
This port is allocated for use by a transport service, rather than an
application. In this case, the name of the transport should
explicitly appear in the registry. Use of this port is defined in
section Section 3.8

XXX Note: IANA is requested to replace all occurrences of "XXX IANA
PORT XXX" by the allocated port value prior to publication. XXX

7.2. DCCP Reset
IANA is requested to assign a new DCCP Reset Code in the DCCP Reset
Codes Registry, with the short description "Encapsulated Port Reuse".
This code applies to all DCCP congestion control IDs and should be
allocated a value less than 120 decimal. Use of this reset code is
defined in section Section 3.8. Section 5.6 of RFC4340 defines three
"Data" bytes that are carried by a DCCP Reset. For this Reset Code
these are defined as below:

o Data byte 1: The DCCP Packet Type of the DCCP datagram that
resulted in the error message.

o Data byte 2 & 3: The encapsulated Source UDP Port from the DCCP-
UDP datagram that triggered the ICMP message, in network order.

XXX Note: IANA is requested to replace all occurrences of "XXX IANA
Port Reuse XXX" by the allocated DCCP reset code value prior to
publication. XXX

7.3. SDP Attribute Allocation

IANA is requested to allocate the following new SDP attribute ("att-
field"):

Contact name: DCCP Working Group

Attribute name: dccp-port

Long-form attribute name in English: Encapsulated DCCP Port
Type of attribute: Media level

Subject to charset attribute? No

Purpose of the attribute: See this document, section Section 5.1

Phelan, et al. Expires December 27, 2012 [Page 17]

Internet-Draft DCCP-UDP Encapsulation June 2012

Allowed attribute values: See this document, section Section 5.1

8. Acknowledgments

This document was produced by the DCCP WG. The following contributed
during the working group last call:

Andrew Lentvorski, Lloyd Wood, Pasi Sarolahti, Gerrit Renker, Eddie
Kohler, and Dan Wing.

9. References
9.1. Normative References

[RFCO768] Postel, J., "User Datagram Protocol”, STD 6, RFC 768,
August 1980.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC3605] Huitema, C., "Real Time Control Protocol (RTCP) attribute
in Session Description Protocol (SDP)", RFC 3605,
October 2003.

[RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
Congestion Control Protocol (DCCP)", RFC 4340, March 2006.

[RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
Specifications: ABNF", STD 68, RFC 5234, January 2008.

[RFC5762] Perkins, C., "RTP and the Datagram Congestion Control
Protocol (DCCP)", RFC 5762, April 2010.

9.2. Informative References

[RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
with Session Description Protocol (SDP)", RFC 3264,
June 2002.

[RFC3551] Schulzrinne, H. and S. Casner, "RTP Profile for Audio and
Video Conferences with Minimal Control", STD 65, RFC 3551,
July 2003.

[RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.

Norrman, "The Secure Real-time Transport Protocol (SRTP)",
RFC 3711, March 2004.

Phelan, et al. Expires December 27, 2012 [Page 18]

Internet-Draft DCCP-UDP Encapsulation June 2012

[RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
Description Protocol”, RFC 4566, July 2006.

[RFC4585] Ott, J., Wenger, S., Sato, N., Burmeister, C., and J. Rey,
"Extended RTP Profile for Real-time Transport Control
Protocol (RTCP)-Based Feedback (RTP/AVPF)", RFC 4585,
July 2006.

[RFC4787] Audet, F. and C. Jennings, "Network Address Translation
(NAT) Behavioral Requirements for Unicast UDP", BCP 127,
RFC 4787, January 2007.

[RFC5124] Ott, J. and E. Carrara, "Extended Secure RTP Profile for
Real-time Transport Control Protocol (RTCP)-Based Feedback
(RTP/SAVPF)", RFC 5124, February 2008.

[RFC5238] Phelan, T., "Datagram Transport Layer Security (DTLS) over
the Datagram Congestion Control Protocol (DCCP)",
RFC 5238, May 2008.

[RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
(ICE): A Protocol for Network Address Translator (NAT)
Traversal for Offer/Answer Protocols", RFC 5245,

April 2010.

[RFC5405] Eggert, L. and G. Fairhurst, "Unicast UDP Usage Guidelines
for Application Designers”, BCP 145, RFC 5405,
November 2008.

[RFC5595] Fairhurst, G., "The Datagram Congestion Control Protocol
(DCCP) Service Codes", RFC 5595, September 2009.

[RFC5596] Fairhurst, G., "Datagram Congestion Control Protocol
(DCCP) Simultaneous-Open Technique to Facilitate NAT/
Middlebox Traversal", RFC 5596, September 2009.

[RFC5597] Denis-Courmont, R., "Network Address Translation (NAT)
Behavioral Requirements for the Datagram Congestion
Control Protocol”, BCP 150, RFC 5597, September 2009.

[RFC5761] Perkins, C. and M. Westerlund, "Multiplexing RTP Data and
Control Packets on a Single Port", RFC 5761, April 2010.

[RFC5927] Gont, F., "ICMP Attacks against TCP", RFC 5927, July 2010.

[RFC5939] Andreasen, F., "Session Description Protocol (SDP)
Capability Negotiation", RFC 5939, September 2010.

Phelan, et al. Expires December 27, 2012 [Page 19]

Internet-Draft DCCP-UDP Encapsulation June 2012

[RFC6544] Rosenberg, J., Keranen, A., Lowekamp, B., and A. Roach,
"TCP Candidates with Interactive Connectivity
Establishment (ICE)", RFC 6544, March 2012.

Authors’ Addresses

Tom Phelan

Sonus Networks

7 Technology Dr.
Westford, MA 01886
us

Phone: +1 978 614 8456
Email: tphelan@sonusnet.com

Godred Fairhurst

University of Aberdeen

School of Engineering

Fraser Noble Building
Aberdeen, Scotland AB24 3UE
UK

Email: gorry@erg.abdn.ac.uk
URI: http://www.erg.abdn.ac.uk

Colin Perkins

University of Glasgow

School of Computing Science
Glasgow, Scotland G12 8QQ
UK

Email: csp@csperkins.org
URI: http:http://csperkins.org/

Phelan, et al. Expires December 27, 2012 [Page 20]

Transport Area Working Group B. Briscoe

Internet-Draft BT

Updates: 2309 (if approved) J. Manner
Intended status: BCP Aalto University
Expires: May 11, 2014 November 07, 2013

Byte and Packet Congestion Notification
draft-ietf-tsvwg-byte-pkt-congest-12

Abstract

This document provides recommendations of best current practice for
dropping or marking packets using any active queue management (AQM)
algorithm, including random early detection (RED), BLUE, pre-
congestion notification (PCN) and newer schemes such as CoDel
(Controlled Delay) and PIE (Proportional Integral controller

Enhanced). We give three strong recommendations: (1) packet size
should be taken into account when transports detect and respond to
congestion indications, (2) packet size should not be taken into
account when network equipment creates congestion signals (marking,
dropping), and therefore (3) in the specific case of RED, the byte-
mode packet drop variant that drops fewer small packets should not be
used. This memo updates RFC 2309 to deprecate deliberate
preferential treatment of small packets in AQM algorithms.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on May 11, 2014.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.

Briscoe & Manner Expires May 11, 2014 [Page 1]

Internet-Draft Byte and Packet Congestion Notification November 2013

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Briscoe & Manner Expires May 11, 2014 [Page 2]

Internet-Draft Byte and Packet Congestion Notification November 2013

Table of Contents

1. Introduction 4
1.1. Terminology and Scoping 6
1.2. Example Comparing Packet-Mode Drop and Byte Mode Drop .
2. Recommendations
2.1. Recommendation on Queue Measurement 9
2.2. Recommendation on Encoding Congestion Notification 10
2.3. Recommendation on Responding to Congestion 11
2.4. Recommendation on Handling Congestion Indications when
Splitting or Merging Packets 12
3. Motivating Arguments, 12
3.1. Avoiding Perverse Incentives to (Ab)use Smaller Packets . 12
3.2. Small!=Control 14
3.3. Transport-Independent Network 14
3.4. Partial Deploymentof AQM 15
3.5. Implementation Efficiency 17
4. A Survey and Critique of Past Advice 17
4.1. Congestion Measurement Advice 18
4.1.1. Fixed Size PacketBuffers 18
4.1.2. Congestion Measurement without a Queue 19
4.2. Congestion Notification Advice 20
4.2.1. Network Bias when Encoding 20
4.2.2. Transport Bias when Decoding 22
4.2.3. Making Transports Robust against Control Packet
Losses 23
4.2.4. Congestion Notification: Summary of Conflicting
Advice 24
5. Outstanding Issues and Next Steps 25
5.1. Bit-congestible Network 25
5.2. Bit- & Packet-congestible Network 25
6. Security Considerations 26
7. IANA Considerations 26
8. Conclusions 26
9. Acknowledgements....................... 28
10. Comments Solicited 28
11.References 28
11.1. Normative References 28
11.2. Informative References 28
Appendix A. Survey of RED Implementation Status 32
Appendix B. Sufficiency of Packet-Mode Drop 34
B.1. Packet-Size (In)Dependence in Transports 35
B.2. Bit-Congestible and Packet-Congestible Indications 38
Appendix C. Byte-mode Drop Complicates Policing Congestion
Response 39
Appendix D. Changes from Previous Versions 40

Briscoe & Manner Expires May 11, 2014 [Page 3]

Internet-Draft Byte and Packet Congestion Notification November 2013

1. Introduction

This document provides recommendations of best current practice for
how we should correctly scale congestion control functions with
respect to packet size for the long term. It also recognises that
expediency may be necessary to deal with existing widely deployed
protocols that don't live up to the long term goal.

When signalling congestion, the problem of how (and whether) to take
packet sizes into account has exercised the minds of researchers and
practitioners for as long as active queue management (AQM) has been
discussed. Indeed, one reason AQM was originally introduced was to
reduce the lock-out effects that small packets can have on large
packets in drop-tail queues. This memo aims to state the principles
we should be using and to outline how these principles will affect
future protocol design, taking into account the existing deployments
we have already.

The question of whether to take into account packet size arises at
three stages in the congestion notification process:

Measuring congestion: When a congested resource measures locally how
congested it is, should it measure its queue length in time, bytes
or packets?

Encoding congestion notification into the wire protocol: When a
congested network resource signals its level of congestion, should
it drop / mark each packet dependent on the size of the particular
packet in question?

Decoding congestion notification from the wire protocol: When a
transport interprets the notification in order to decide how much
to respond to congestion, should it take into account the size of
each missing or marked packet?

Consensus has emerged over the years concerning the first stage,
which Section 2.1 records in the RFC Series. In summary: If possible
it is best to measure congestion by time in the queue, but otherwise
the choice between bytes and packets solely depends on whether the
resource is congested by bytes or packets.

The controversy is mainly around the last two stages: whether to
allow for the size of the specific packet notifying congestion i)
when the network encodes or ii) when the transport decodes the
congestion notification.

Currently, the RFC series is silent on this matter other than a paper
trail of advice referenced from [RFC2309], which conditionally

Briscoe & Manner Expires May 11, 2014 [Page 4]

Internet-Draft Byte and Packet Congestion Notification November 2013

recommends byte-mode (packet-size dependent) drop [pktByteEmail].
Reducing drop of small packets certainly has some tempting
advantages: i) it drops less control packets, which tend to be small
and ii) it makes TCP’s bit-rate less dependent on packet size.
However, there are ways of addressing these issues at the transport
layer, rather than reverse engineering network forwarding to fix the
problems.

This memo updates [RFC2309] to deprecate deliberate preferential
treatment of packets in AQM algorithms solely because of their size.

It recommends that (1) packet size should be taken into account when
transports detect and respond to congestion indications, (2) not when
network equipment creates them. This memo also adds to the
congestion control principles enumerated in BCP 41 [RFC2914].

In the particular case of Random early Detection (RED), this means
that the byte-mode packet drop variant should not be used to drop
fewer small packets, because that creates a perverse incentive for
transports to use tiny segments, consequently also opening up a DoS
vulnerability. Fortunately all the RED implementers who responded to
our admittedly limited survey (Section 4.2.4) have not followed the
earlier advice to use byte-mode drop, so the position this memo
argues for seems to already exist in implementations.

However, at the transport layer, TCP congestion control is a widely
deployed protocol that doesn’t scale with packet size (i.e. its

reduction in rate does not take into account the size of a lost

packet). To date this hasn't been a significant problem because most

TCP implementations have been used with similar packet sizes. But,

as we design new congestion control mechanisms, this memo recommends
that we should build in scaling with packet size rather than assuming

we should follow TCP’s example.

This memo continues as follows. First it discusses terminology and
scoping. Section 2 gives the concrete formal recommendations,
followed by motivating arguments in Section 3. We then critically
survey the advice given previously in the RFC series and the research
literature (Section 4), referring to an assessment of whether or not
this advice has been followed in production networks (Appendix A).
To wrap up, outstanding issues are discussed that will need
resolution both to inform future protocol designs and to handle
legacy (Section 5). Then security issues are collected together in
Section 6 before conclusions are drawn in Section 8. The interested
reader can find discussion of more detailed issues on the theme of
byte vs. packet in the appendices.

This memo intentionally includes a non-negligible amount of material
on the subject. For the busy reader Section 2 summarises the

Briscoe & Manner Expires May 11, 2014 [Page 5]

Internet-Draft Byte and Packet Congestion Notification November 2013

recommendations for the Internet community.
1.1. Terminology and Scoping

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

This memo applies to the design of all AQM algorithms, for example,
Random Early Detection (RED) [RFC2309], BLUE [BLUEQZ2], Pre-Congestion
Noatification (PCN) [RFC5670], Controlled Delay (CoDel)
[I-D.nichols-tsvwg-codel] and the Proportional Integral controller

Enhanced (PIE) [I-D.pan-tsvwg-pie]. Throughout, RED is used as a

concrete example because it is a widely known and deployed AQM

algorithm. There is no intention to imply that the advice is any

less applicable to the other algorithms, nor that RED is preferred.

Congestion Notification: Congestion natification is a changing
signal that aims to communicate the probability that the network
resource(s) will not be able to forward the level of traffic load
offered (or that there is an impending risk that they will not be
able to).

The ‘impending risk’ qualifier is added, because AQM systems set a
virtual limit smaller than the actual limit to the resource, then

notify when this virtual limit is exceeded in order to avoid
uncontrolled congestion of the actual capacity.

Congestion notification communicates a real number bounded by the
range [0, 1]. This ties in with the most well-understood
measure of congestion notification: drop probability.

Explicit and Implicit Notification: The byte vs. packet dilemma
concerns congestion naotification irrespective of whether it is
signalled implicitly by drop or using Explicit Congestion
Notification (ECN [RFC3168] or PCN [RFC5670]). Throughout this
document, unless clear from the context, the term marking will be
used to mean notifying congestion explicitly, while congestion
notification will be used to mean notifying congestion either
implicitly by drop or explicitly by marking.

Bit-congestible vs. Packet-congestible: If the load on a resource
depends on the rate at which packets arrive, it is called packet-
congestible. If the load depends on the rate at which bits arrive
it is called bit-congestible.

Examples of packet-congestible resources are route look-up engines
and firewalls, because load depends on how many packet headers

Briscoe & Manner Expires May 11, 2014 [Page 6]

Internet-Draft Byte and Packet Congestion Notification November 2013

they have to process. Examples of bit-congestible resources are
transmission links, radio power and most buffer memory, because
the load depends on how many bits they have to transmit or store.
Some machine architectures use fixed size packet buffers, so
buffer memory in these cases is packet-congestible (see

Section 4.1.1).

The path through a machine will typically encounter both packet-
congestible and bit-congestible resources. However, currently, a
design goal of network processing equipment such as routers and
firewalls is to size the packet-processing engine(s) relative to

the lines in order to keep packet processing uncongested even
under worst case packet rates with runs of minimum size packets.
Therefore, packet-congestion is currently rare [RFC6077; S.3.3],
but there is no guarantee that it will not become more common in
future.

Note that information is generally processed or transmitted with a
minimum granularity greater than a bit (e.g. octets). The
appropriate granularity for the resource in question should be
used, but for the sake of brevity we will talk in terms of bytes

in this memo.

Coarser Granularity: Resources may be congestible at higher levels
of granularity than bits or packets, for instance stateful
firewalls are flow-congestible and call-servers are session-
congestible. This memo focuses on congestion of connectionless
resources, but the same principles may be applicable for
congestion natification protocols controlling per-flow and per-
session processing or state.

RED Terminology: In RED whether to use packets or bytes when
measuring queues is called respectively "packet-mode queue
measurement” or "byte-mode queue measurement”. And whether the
probability of dropping a particular packet is independent or
dependent on its size is called respectively "packet-mode drop" or
"byte-mode drop". The terms byte-mode and packet-mode should not
be used without specifying whether they apply to queue measurement
or to drop.

1.2. Example Comparing Packet-Mode Drop and Byte-Mode Drop

Taking RED as a well-known example algorithm, a central question
addressed by this document is whether to recommend RED’s packet-mode
drop variant and to deprecate byte-mode drop. Table 1 compares how
packet-mode and byte-mode drop affect two flows of different size

packets. For each it gives the expected number of packets and of

bits dropped in one second. Each example flow runs at the same bit-

Briscoe & Manner Expires May 11, 2014 [Page 7]

Internet-Draft Byte and Packet Congestion Notification November 2013

rate of 48Mb/s, but one is broken up into small 60 byte packets and
the other into large 1500 byte packets.

To keep up the same bit-rate, in one second there are about 25 times
more small packets because they are 25 times smaller. As can be seen
from the table, the packet rate is 100,000 small packets versus 4,000
large packets per second (pps).

Parameter Formula Small packets Large packets
Packet size s/8 60B 1,500B
Packet size S 480b 12,000b
Bit-rate X 48Mbps 48Mbps
Packet-rate u=x/s 100kpps 4kpps
Packet-mode Drop

Pkt loss probability p 0.1% 0.1%

Pkt loss-rate p*u 100pps 4pps

Bit loss-rate p*u*s 48kbps 48kbps
Byte-mode Drop MTU, M=12,000b

Pkt loss probability b = p*s/M 0.004% 0.1%
Pkt loss-rate b*u 4pps 4pps

Bit loss-rate b*u*s 1.92kbps 48kbps

Table 1: Example Comparing Packet-mode and Byte-mode Drop

For packet-mode drop, we illustrate the effect of a drop probability

of 0.1%, which the algorithm applies to all packets irrespective of
size. Because there are 25 times more small packets in one second,
it naturally drops 25 times more small packets, that is 100 small
packets but only 4 large packets. But if we count how many bits it
drops, there are 48,000 bits in 100 small packets and 48,000 bits in
4 large packets--the same number of bits of small packets as large.

The packet-mode drop algorithm drops any bit with the same
probability whether the bit is in a small or a large packet.

For byte-mode drop, again we use an example drop probability of 0.1%,
but only for maximum size packets (assuming the link maximum
transmission unit (MTU) is 1,500B or 12,000b). The byte-mode
algorithm reduces the drop probability of smaller packets

proportional to their size, making the probability that it drops a

small packet 25 times smaller at 0.004%. But there are 25 times more
small packets, so dropping them with 25 times lower probability

results in dropping the same number of packets: 4 drops in both

cases. The 4 small dropped packets contain 25 times less bits than
the 4 large dropped packets: 1,920 compared to 48,000.

Briscoe & Manner Expires May 11, 2014 [Page 8]

Internet-Draft Byte and Packet Congestion Notification November 2013

The byte-mode drop algorithm drops any bit with a probability
proportionate to the size of the packet it is in.

2. Recommendations

This section gives recommendations related to network equipment in
Sections 2.1 and 2.2, and in Sections 2.3 and 2.4 we discuss the
implications on the transport protocols.

2.1. Recommendation on Queue Measurement

Ideally, an AQM would measure the service time of the queue to
measure congestion of a resource. However service time can only be
measured as packets leave the queue, where it is not always expedient
to implement a full AQM algorithm. To predict the service time as
packets join the queue, an AQM algorithm needs to measure the length
of the queue.

In this case, if the resource is bit-congestible, the AQM

implementation SHOULD measure the length of the queue in bytes and,
if the resource is packet-congestible, the implementation SHOULD
measure the length of the queue in packets. Subject to the

exceptions below, no other choice makes sense, because the number of
packets waiting in the queue isn’t relevant if the resource gets
congested by bytes and vice versa. For example, the length of the
gueue into a transmission line would be measured in bytes, while the
length of the queue into a firewall would be measured in packets.

To avoid the pathological effects of drop tail, the AQM can then
transform this service time or queue length into the probability of
dropping or marking a packet (e.g. RED’s piecewise linear function
between thresholds).

What this advice means for RED as a specific example:

1. A RED implementation SHOULD use byte mode queue measurement for
measuring the congestion of bit-congestible resources and packet
mode queue measurement for packet-congestible resources.

2. Animplementation SHOULD NOT make it possible to configure the
way a queue measures itself, because whether a queue is bit-
congestible or packet-congestible is an inherent property of the
queue.

Exceptions to these recommendations might be necessary, for instance
where a packet-congestible resource has to be configured as a proxy
bottleneck for a bit-congestible resource in an adjacent box that

does not support AQM.

Briscoe & Manner Expires May 11, 2014 [Page 9]

Internet-Draft Byte and Packet Congestion Notification November 2013

The recommended approach in less straightforward scenarios, such as
fixed size packet buffers, resources without a queue and buffers
comprising a mix of packet and bit-congestible resources, is

discussed in Section 4.1. For instance, Section 4.1.1 explains that

the queue into a line should be measured in bytes even if the queue
consists of fixed-size packet-buffers, because the root-cause of any
congestion is bytes arriving too fast for the line--packets filling

buffers are merely a symptom of the underlying congestion of the

line.

2.2. Recommendation on Encoding Congestion Natification

When encoding congestion notification (e.g. by drop, ECN or PCN), the
probability that network equipment drops or marks a particular packet
to notify congestion SHOULD NOT depend on the size of the packet in
question. As the example in Section 1.2 illustrates, to drop any bit

with probability 0.1% it is only necessary to drop every packet with
probability 0.1% without regard to the size of each packet.

This approach ensures the network layer offers sufficient congestion
information for all known and future transport protocols and also
ensures no perverse incentives are created that would encourage
transports to use inappropriately small packet sizes.

What this advice means for RED as a specific example:

1. The RED AQM algorithm SHOULD NOT use byte-mode drop, i.e. it
ought to use packet-mode drop. Byte-mode drop is more complex,
it creates the perverse incentive to fragment segments into tiny
pieces and it is vulnerable to floods of small packets.

2. If a vendor has implemented byte-mode drop, and an operator has
turned it on, it is RECOMMENDED to switch it to packet-mode drop,
after establishing if there are any implications on the relative
performance of applications using different packet sizes. The
unlikely possibility of some application-specific legacy use of
byte-mode drop is the only reason that all the above
recommendations on encoding congestion notification are not
phrased more strongly.

RED as a whole SHOULD NOT be switched off. Without RED, a drop
tail queue biases against large packets and is vulnerable to
floods of small packets.

Note well that RED’s byte-mode queue drop is completely orthogonal to
byte-mode queue measurement and should not be confused with it. If a
RED implementation has a byte-mode but does not specify what sort of
byte-mode, it is most probably byte-mode queue measurement, which is

Briscoe & Manner Expires May 11, 2014 [Page 10]

Internet-Draft Byte and Packet Congestion Notification November 2013

fine. However, if in doubt, the vendor should be consulted.

A survey (Appendix A) showed that there appears to be little, if any,
installed base of the byte-mode drop variant of RED. This suggests
that deprecating byte-mode drop will have little, if any, incremental
deployment impact.

2.3. Recommendation on Responding to Congestion

When a transport detects that a packet has been lost or congestion
marked, it SHOULD consider the strength of the congestion indication
as proportionate to the size in octets (bytes) of the missing or

marked packet.

In other words, when a packet indicates congestion (by being lost or
marked) it can be considered conceptually as if there is a congestion
indication on every octet of the packet, not just one indication per
packet.

To be clear, the above recommendation solely describes how a
transport should interpret the meaning of a congestion indication, as

a long term goal. It makes no recommendation on whether a transport
should act differently based on this interpretation. It merely aids
interoperablity between transports, if they choose to make their
actions depend on the strength of congestion indications.

This definition will be useful as the IETF transport area continues
its programme of;

0 updating host-based congestion control protocols to take account
of packet size

0 making transports less sensitive to losing control packets like
SYNs and pure ACKs.

What this advice means for the case of TCP:

1. If two TCP flows with different packet sizes are required to run
at equal bit rates under the same path conditions, this SHOULD be
done by altering TCP (Section 4.2.2), not network equipment (the
latter affects other transports besides TCP).

2. Ifitis desired to improve TCP performance by reducing the
chance that a SYN or a pure ACK will be dropped, this SHOULD be
done by maodifying TCP (Section 4.2.3), not network equipment.

To be clear, we are not recommending at all that TCPs under
equivalent conditions should aim for equal bit-rates. We are merely

Briscoe & Manner Expires May 11, 2014 [Page 11]

Internet-Draft Byte and Packet Congestion Notification November 2013

saying that anyone trying to do such a thing should modify their TCP
algorithm, not the network.

These recommendations are phrased as 'SHOULD' rather than '"MUST’,
because there may be cases where expediency dictates that
compatibility with pre-existing versions of a transport protocol make

the recommendations impractical.

2.4. Recommendation on Handling Congestion Indications when Splitting
or Merging Packets

Packets carrying congestion indications may be split or merged in
some circumstances (e.g. at a RTP/RTCP transcoder or during IP
fragment reassembly). Splitting and merging only make sense in the
context of ECN, not loss.

The general rule to follow is that the number of octets in packets
with congestion indications SHOULD be equivalent before and after
merging or splitting. This is based on the principle used above;

that an indication of congestion on a packet can be considered as an
indication of congestion on each octet of the packet.

The above rule is not phrased with the word "MUST" to allow the
following exception. There are cases where pre-existing protocols

were not designed to conserve congestion marked octets (e.g. IP
fragment reassembly [RFC3168] or loss statistics in RTCP receiver
reports [RFC3550] before ECN was added [RFC6679]). When any such
protocol is updated, it SHOULD comply with the above rule to conserve
marked octets. However, the rule may be relaxed if it would

otherwise become too complex to interoperate with pre-existing
implementations of the protocol.

One can think of a splitting or merging process as if all the
incoming congestion-marked octets increment a counter and all the
outgoing marked octets decrement the same counter. In order to
ensure that congestion indications remain timely, even the smallest
positive remainder in the conceptual counter should trigger the next
outgoing packet to be marked (causing the counter to go negative).

3. Motivating Arguments

This section is informative. It justifies the recommendations given
in the previous section.

3.1. Avoiding Perverse Incentives to (Ab)use Smaller Packets

Increasingly, it is being recognised that a protocol design must take
care not to cause unintended consequences by giving the parties in

Briscoe & Manner Expires May 11, 2014 [Page 12]

Internet-Draft Byte and Packet Congestion Notification November 2013

the protocol exchange perverse incentives [Evol_cc][RFC3426]. Given
there are many good reasons why larger path maximum transmission
units (PMTUs) would help solve a number of scaling issues, we do not
want to create any bias against large packets that is greater than

their true cost.

Imagine a scenario where the same bit rate of packets will contribute
the same to bit-congestion of a link irrespective of whether it is

sent as fewer larger packets or more smaller packets. A protocol
design that caused larger packets to be more likely to be dropped
than smaller ones would be dangerous in both the following cases:

Malicious transports: A queue that gives an advantage to small
packets can be used to amplify the force of a flooding attack. By
sending a flood of small packets, the attacker can get the queue
to discard more traffic in large packets, allowing more attack
traffic to get through to cause further damage. Such a queue
allows attack traffic to have a disproportionately large effect on
regular traffic without the attacker having to do much work.

Non-malicious transports: Even if an application designer is not
actually malicious, if over time it is noticed that small packets
tend to go faster, designers will act in their own interest and
use smaller packets. Queues that give advantage to small packets
create an evolutionary pressure for applications or transports to
send at the same bit-rate but break their data stream down into
tiny segments to reduce their drop rate. Encouraging a high
volume of tiny packets might in turn unnecessarily overload a
completely unrelated part of the system, perhaps more limited by
header-processing than bandwidth.

Imagine two unresponsive flows arrive at a bit-congestible
transmission link each with the same bit rate, say 1Mbps, but one
consists of 1500B and the other 60B packets, which are 25x smaller.
Consider a scenario where gentle RED [gentle_RED] is used, along with
the variant of RED we advise against, i.e. where the RED algorithm is
configured to adjust the drop probability of packets in proportion to
each packet’s size (byte mode packet drop). In this case, RED aims
to drop 25x more of the larger packets than the smaller ones. Thus,
for example if RED drops 25% of the larger packets, it will aim to
drop 1% of the smaller packets (but in practice it may drop more as
congestion increases [RFC4828; Appx B.4]). Even though both flows
arrive with the same bit rate, the bit rate the RED queue aims to

pass to the line will be 750kbps for the flow of larger packets but
990kbps for the smaller packets (because of rate variations it will
actually be a little less than this target).

Note that, although the byte-mode drop variant of RED amplifies small

Briscoe & Manner Expires May 11, 2014 [Page 13]

Internet-Draft Byte and Packet Congestion Notification November 2013

packet attacks, drop-tail queues amplify small packet attacks even
more (see Security Considerations in Section 6). Wherever possible
neither should be used.

3.2. Small = Control

Dropping fewer control packets considerably improves performance. It

is tempting to drop small packets with lower probability in order to

improve performance, because many control packets tend to be smaller
(TCP SYNs & ACKs, DNS queries & responses, SIP messages, HTTP GETs,
etc). However, we must not give control packets preference purely by

virtue of their smallness, otherwise it is too easy for any data

source to get the same preferential treatment simply by sending data

in smaller packets. Again we should not create perverse incentives

to favour small packets rather than to favour control packets, which

is what we intend.

Just because many control packets are small does not mean all small
packets are control packets.

So, rather than fix these problems in the network, we argue that the
transport should be made more robust against losses of control

packets (see 'Making Transports Robust against Control Packet Losses’
in Section 4.2.3).

3.3. Transport-Independent Network

TCP congestion control ensures that flows competing for the same
resource each maintain the same number of segments in flight,
irrespective of segment size. So under similar conditions, flows
with different segment sizes will get different bit-rates.

To counter this effect it seems tempting not to follow our
recommendation, and instead for the network to bias congestion
notification by packet size in order to equalise the bit-rates of

flows with different packet sizes. However, in order to do this, the
gueuing algorithm has to make assumptions about the transport, which
become embedded in the network. Specifically:

0 The queuing algorithm has to assume how aggressively the transport
will respond to congestion (see Section 4.2.4). If the network
assumes the transport responds as aggressively as TCP NewReno, it
will be wrong for Compound TCP and differently wrong for Cubic
TCP, etc. To achieve equal bit-rates, each transport then has to
guess what assumption the network made, and work out how to
replace this assumed aggressiveness with its own aggressiveness.

Briscoe & Manner Expires May 11, 2014 [Page 14]

Internet-Draft Byte and Packet Congestion Notification November 2013

0 Also, if the network biases congestion notification by packet size
it has to assume a baseline packet size--all proposed algorithms
use the local MTU (for example see the byte-mode loss probability
formula in Table 1). Then if the non-Reno transports mentioned
above are trying to reverse engineer what the network assumed,
they also have to guess the MTU of the congested link.

Even though reducing the drop probability of small packets (e.qg.
RED’s byte-mode drop) helps ensure TCP flows with different packet
sizes will achieve similar bit rates, we argue this correction should

be made to any future transport protocols based on TCP, not to the
network in order to fix one transport, no matter how predominant it
is. Effectively, favouring small packets is reverse engineering of
network equipment around one particular transport protocol (TCP),
contrary to the excellent advice in [RFC3426], which asks designers
to question "Why are you proposing a solution at this layer of the
protocol stack, rather than at another layer?"

In contrast, if the network never takes account of packet size, the
transport can be certain it will never need to guess any assumptions
the network has made. And the network passes two pieces of
information to the transport that are sufficient in all cases: i)

congestion natification on the packet and ii) the size of the packet.

Both are available for the transport to combine (by taking account of
packet size when responding to congestion) or not. Appendix B checks
that these two pieces of information are sufficient for all relevant
scenarios.

When the network does not take account of packet size, it allows
transport protocols to choose whether to take account of packet size

or not. However, if the network were to bias congestion notification

by packet size, transport protocols would have no choice; those that
did not take account of packet size themselves would unwittingly
become dependent on packet size, and those that already took account
of packet size would end up taking account of it twice.

3.4. Partial Deployment of AQM

In overview, the argument in this section runs as follows:

0 Because the network does not and cannot always drop packets in
proportion to their size, it shouldn’t be given the task of making
drop signals depend on packet size at all.

o Transports on the other hand don’t always want to make their rate

response proportional to the size of dropped packets, but if they
want to, they always can.

Briscoe & Manner Expires May 11, 2014 [Page 15]

Internet-Draft Byte and Packet Congestion Notification November 2013

The argument is similar to the end-to-end argument that says "Don’t
do X in the network if end-systems can do X by themselves, and they
want to be able to choose whether to do X anyway." Actually the
following argument is stronger; in addition it says "Don'’t give the
network task X that could be done by the end-systems, if X is not
deployed on all network nodes, and end-systems won't be able to tell
whether their network is doing X, or whether they need to do X
themselves." In this case, the X in question is "making the response
to congestion depend on packet size".

We will now re-run this argument taking each step in more depth. The
argument applies solely to drop, not to ECN marking.

A queue drops packets for either of two reasons: a) to signal to host
congestion controls that they should reduce the load and b) because
there is no buffer left to store the packets. Active queue
management tries to use drops as a signal for hosts to slow down
(case a) so that drop due to buffer exhaustion (case b) should not be
necessary.

AQM is not universally deployed in every queue in the Internet; many
cheap Ethernet bridges, software firewalls, NATs on consumer devices,
etc implement simple tail-drop buffers. Even if AQM were universal,

it has to be able to cope with buffer exhaustion (by switching to a
behaviour like tail-drop), in order to cope with unresponsive or
excessive transports. For these reasons networks will sometimes be
dropping packets as a last resort (case b) rather than under AQM
control (case a).

When buffers are exhausted (case b), they don't naturally drop
packets in proportion to their size. The network can only reduce the
probability of dropping smaller packets if it has enough space to
store them somewhere while it waits for a larger packet that it can
drop. If the buffer is exhausted, it does not have this choice.
Admittedly tail-drop does naturally drop somewhat fewer small
packets, but exactly how few depends more on the mix of sizes than
the size of the packet in question. Nonetheless, in general, if we
wanted networks to do size-dependent drop, we would need universal
deployment of (packet-size dependent) AQM code, which is currently
unrealistic.

A host transport cannot know whether any particular drop was a
deliberate signal from an AQM or a sign of a queue shedding packets
due to buffer exhaustion. Therefore, because the network cannot
universally do size-dependent drop, it should not do it all.

Whereas universality is desirable in the network, diversity is
desirable between different transport layer protocols - some, like

Briscoe & Manner Expires May 11, 2014 [Page 16]

Internet-Draft Byte and Packet Congestion Notification November 2013

NewReno TCP [RFC5681], may not choose to make their rate response
proportionate to the size of each dropped packet, while others will
(e.g. TFRC-SP [RFC4828]).

3.5. Implementation Efficiency

Biasing against large packets typically requires an extra multiply

and divide in the network (see the example byte-mode drop formula in
Table 1). Allowing for packet size at the transport rather than in

the network ensures that neither the network nor the transport needs
to do a multiply operation--multiplication by packet size is

effectively achieved as a repeated add when the transport adds to its
count of marked bytes as each congestion event is fed to it. Also

the work to do the biasing is spread over many hosts, rather than
concentrated in just the congested network element. These aren’t
principled reasons in themselves, but they are a happy consequence of
the other principled reasons.

4. A Survey and Critique of Past Advice
This section is informative, not normative.

The original 1993 paper on RED [RED93] proposed two options for the
RED active queue management algorithm: packet mode and byte mode.
Packet mode measured the queue length in packets and dropped (or
marked) individual packets with a probability independent of their

size. Byte mode measured the queue length in bytes and marked an
individual packet with probability in proportion to its size

(relative to the maximum packet size). In the paper’s outline of

further work, it was stated that no recommendation had been made on
whether the queue size should be measured in bytes or packets, but
noted that the difference could be significant.

When RED was recommended for general deployment in 1998 [RFC2309],
the two modes were mentioned implying the choice between them was a
guestion of performance, referring to a 1997 email [pktByteEmail] for
advice on tuning. A later addendum to this email introduced the

insight that there are in fact two orthogonal choices:

o whether to measure queue length in bytes or packets (Section 4.1)

o whether the drop probability of an individual packet should depend
on its own size (Section 4.2).

The rest of this section is structured accordingly.

Briscoe & Manner Expires May 11, 2014 [Page 17]

Internet-Draft Byte and Packet Congestion Notification November 2013

4.1. Congestion Measurement Advice

The choice of which metric to use to measure queue length was left
open in RFC2309. It is now well understood that queues for bit-
congestible resources should be measured in bytes, and queues for
packet-congestible resources should be measured in packets
[pktByteEmail].

Congestion in some legacy bit-congestible buffers is only measured in
packets not bytes. In such cases, the operator has to set the
thresholds mindful of a typical mix of packets sizes. Any AQM
algorithm on such a buffer will be oversensitive to high proportions
of small packets, e.g. a DoS attack, and under-sensitive to high
proportions of large packets. However, there is no need to make
allowances for the possibility of such legacy in future protocol
design. This is safe because any under-sensitivity during unusual
traffic mixes cannot lead to congestion collapse given the buffer
will eventually revert to tail drop, discarding proportionately more
large packets.

4.1.1. Fixed Size Packet Buffers

The question of whether to measure queues in bytes or packets seems
to be well understood. However, measuring congestion is confusing
when the resource is bit congestible but the queue into the resource

is packet congestible. This section outlines the approach to take.

Some, mostly older, queuing hardware allocates fixed sized buffers in
which to store each packet in the queue. This hardware forwards to
the line in one of two ways:

o With some hardware, any fixed sized buffers not completely filled
by a packet are padded when transmitted to the wire. This case,
should clearly be treated as packet-congestible, because both
gueuing and transmission are in fixed MTU-sized units. Therefore
the queue length in packets is a good model of congestion of the
link.

o More commonly, hardware with fixed size packet buffers transmits
packets to line without padding. This implies a hybrid forwarding
system with transmission congestion dependent on the size of
packets but queue congestion dependent on the number of packets,
irrespective of their size.

Nonetheless, there would be no queue at all unless the line had
become congested--the root-cause of any congestion is too many
bytes arriving for the line. Therefore, the AQM should measure
the queue length as the sum of all the packet sizes in bytes that

Briscoe & Manner Expires May 11, 2014 [Page 18]

Internet-Draft Byte and Packet Congestion Notification November 2013

are queued up waiting to be serviced by the line, irrespective of
whether each packet is held in a fixed size buffer.

In the (unlikely) first case where use of padding means the queue
should be measured in packets, further confusion is likely because

the fixed buffers are rarely all one size. Typically pools of

different sized buffers are provided (Cisco uses the term 'buffer
carving’ for the process of dividing up memory into these pools
[IOSArch]). Usually, if the pool of small buffers is exhausted,

arriving small packets can borrow space in the pool of large buffers,
but not vice versa. However, there is no need to consider all this
complexity, because the root-cause of any congestion is still line
overload--buffer consumption is only the symptom. Therefore, the
length of the queue should be measured as the sum of the bytes in the
gueue that will be transmitted to line, including any padding. In

the (unusual) case of transmission with padding this means the sum of
the sizes of the small buffers queued plus the sum of the sizes of

the large buffers queued.

We will return to borrowing of fixed sized buffers when we discuss
biasing the drop/marking probability of a specific packet because of
its size in Section 4.2.1. But here we can repeat the simple rule

for how to measure the length of queues of fixed buffers: no matter
how complicated the buffering scheme is, ultimately a transmission
line is nearly always bit-congestible so the number of bytes queued
up waiting for the line measures how congested the line is, and it is
rarely important to measure how congested the buffering system is.

4.1.2. Congestion Measurement without a Queue

AQM algorithms are nearly always described assuming there is a queue
for a congested resource and the algorithm can use the queue length

to determine the probability that it will drop or mark each packet.

But not all congested resources lead to queues. For instance, power
limited resources are usually bit-congestible if energy is primarily
required for transmission rather than header processing, but it is

rare for a link protocol to build a queue as it approaches maximum
power.

Nonetheless, AQM algorithms do not require a queue in order to work.

For instance spectrum congestion can be modelled by signal quality

using target bit-energy-to-noise-density ratio. And, to model radio

power exhaustion, transmission power levels can be measured and
compared to the maximum power available. [ECNFixedWireless] proposes
a practical and theoretically sound way to combine congestion

notification for different bit-congestible resources at different

layers along an end to end path, whether wireless or wired, and

whether with or without queues.

Briscoe & Manner Expires May 11, 2014 [Page 19]

Internet-Draft Byte and Packet Congestion Notification November 2013

In wireless protocols that use request to send / clear to send (RTS /

CTS) control, such as some variants of IEEE802.11, it is reasonable

to base an AQM on the time spent waiting for transmission

opportunities (TXOPs) even though wireless spectrum is usually

regarded as congested by bits (for a given coding scheme). This is
because requests for TXOPs queue up as the spectrum gets congested by
all the bits being transferred. So the time that TXOPs are queued

directly reflects bit congestion of the spectrum.

4.2. Congestion Notification Advice
4.2.1. Network Bias when Encoding
4.2.1.1. Advice on Packet Size Bias in RED

The previously mentioned email [pktByteEmail] referred to by
[RFC2309] advised that most scarce resources in the Internet were
bit-congestible, which is still believed to be true (Section 1.1).

But it went on to offer advice that is updated by this memo. It said

that drop probability should depend on the size of the packet being
considered for drop if the resource is bit-congestible, but not if it

is packet-congestible. The argument continued that if packet drops
were inflated by packet size (byte-mode dropping), "a flow’s fraction

of the packet drops is then a good indication of that flow's fraction

of the link bandwidth in bits per second". This was consistent with

a referenced policing mechanism being worked on at the time for
detecting unusually high bandwidth flows, eventually published in

1999 [pBox]. However, the problem could and should have been solved
by making the policing mechanism count the volume of bytes randomly
dropped, not the number of packets.

A few months before RFC2309 was published, an addendum was added to
the above archived email referenced from the RFC, in which the final
paragraph seemed to partially retract what had previously been said.

It clarified that the question of whether the probability of

dropping/marking a packet should depend on its size was not related

to whether the resource itself was bit congestible, but a completely
orthogonal question. However the only example given had the queue
measured in packets but packet drop depended on the size of the

packet in question. No example was given the other way round.

In 2000, Cnodder et al [REDbyte] pointed out that there was an error

in the part of the original 1993 RED algorithm that aimed to

distribute drops uniformly, because it didn't correctly take into

account the adjustment for packet size. They recommended an
algorithm called RED _4 to fix this. But they also recommended a
further change, RED_5, to adjust drop rate dependent on the square of
relative packet size. This was indeed consistent with one implied

Briscoe & Manner Expires May 11, 2014 [Page 20]

Internet-Draft Byte and Packet Congestion Notification November 2013

motivation behind RED’s byte mode drop--that we should reverse
engineer the network to improve the performance of dominant end-to-
end congestion control mechanisms. This memo makes a different
recommendations in Section 2.

By 2003, a further change had been made to the adjustment for packet
size, this time in the RED algorithm of the ns2 simulator. Instead

of taking each packet's size relative to a ‘maximum packet size’ it

was taken relative to a ‘mean packet size’, intended to be a static
value representative of the ‘typical’ packet size on the link. We

have not been able to find a justification in the literature for this
change, however Eddy and Allman conducted experiments [REDbias] that
assessed how sensitive RED was to this parameter, amongst other
things. However, this changed algorithm can often lead to drop
probabilities of greater than 1 (which gives a hint that there is

probably a mistake in the theory somewhere).

On 10-Nov-2004, this variant of byte-mode packet drop was made the
default in the ns2 simulator. It seems unlikely that byte-mode drop
has ever been implemented in production networks (Appendix A),
therefore any conclusions based on ns2 simulations that use RED
without disabling byte-mode drop are likely to behave very

differently from RED in production networks.

4.2.1.2. Packet Size Bias Regardless of AQM

The byte-mode drop variant of RED (or a similar variant of other AQM
algorithms) is not the only possible bias towards small packets in
gueueing systems. We have already mentioned that tail-drop queues
naturally tend to lock-out large packets once they are full.

But also queues with fixed sized buffers reduce the probability that
small packets will be dropped if (and only if) they allow small

packets to borrow buffers from the pools for larger packets (see
Section 4.1.1). Borrowing effectively makes the maximum queue size
for small packets greater than that for large packets, because more
buffers can be used by small packets while less will fit large

packets. Incidentally, the bias towards small packets from buffer
borrowing is nothing like as large as that of RED’s byte-mode drop.

Nonetheless, fixed-buffer memory with tail drop is still prone to
lock-out large packets, purely because of the tail-drop aspect. So,
fixed size packet-buffers should be augmented with a good AQM
algorithm and packet-mode drop. If an AQM is too complicated to
implement with multiple fixed buffer pools, the minimum necessary to
prevent large packet lock-out is to ensure smaller packets never use
the last available buffer in any of the pools for larger packets.

Briscoe & Manner Expires May 11, 2014 [Page 21]

Internet-Draft Byte and Packet Congestion Notification November 2013

4.2.2. Transport Bias when Decoding

The above proposals to alter the network equipment to bias towards
smaller packets have largely carried on outside the IETF process.
Whereas, within the IETF, there are many different proposals to alter
transport protocols to achieve the same goals, i.e. either to make
the flow bit-rate take account of packet size, or to protect control
packets from loss. This memo argues that altering transport
protocols is the more principled approach.

A recently approved experimental RFC adapts its transport layer
protocol to take account of packet sizes relative to typical TCP

packet sizes. This proposes a new small-packet variant of TCP-
friendly rate control [RFC5348] called TFRC-SP [RFC4828].
Essentially, it proposes a rate equation that inflates the flow rate

by the ratio of a typical TCP segment size (1500B including TCP
header) over the actual segment size [PktSizeEqQUCC]. (There are also
other important differences of detail relative to TFRC, such as using
virtual packets [CCvarPktSize] to avoid responding to multiple losses
per round trip and using a minimum inter-packet interval.)

Section 4.5.1 of this TFRC-SP spec discusses the implications of
operating in an environment where queues have been configured to drop
smaller packets with proportionately lower probability than larger

ones. But it only discusses TCP operating in such an environment,

only mentioning TFRC-SP briefly when discussing how to define
fairness with TCP. And it only discusses the byte-mode dropping
version of RED as it was before Cnodder et al pointed out it didn’t
sufficiently bias towards small packets to make TCP independent of
packet size.

So the TFRC-SP spec doesn’t address the issue of which of the network
or the transport _should_ handle fairness between different packet
sizes. In its Appendix B.4 it discusses the possibility of both

TFRC-SP and some network buffers duplicating each other’s attempts to
deliberately bias towards small packets. But the discussion is not
conclusive, instead reporting simulations of many of the

possibilities in order to assess performance but not recommending any
particular course of action.

The paper originally proposing TFRC with virtual packets (VP-TFRC)
[CCvarPktSize] proposed that there should perhaps be two variants to
cater for the different variants of RED. However, as the TFRC-SP
authors point out, there is no way for a transport to know whether

some gueues on its path have deployed RED with byte-mode packet drop
(except if an exhaustive survey found that no-one has deployed it!--

see Appendix A). Incidentally, VP-TFRC also proposed that byte-mode
RED dropping should really square the packet-size compensation-factor

Briscoe & Manner Expires May 11, 2014 [Page 22]

Internet-Draft Byte and Packet Congestion Notification November 2013

(like that of Cnodder's RED_5, but apparently unaware of it).

Pre-congestion notification [RFC5670] is an IETF technology to use a
virtual queue for AQM marking for packets within one Diffserv class

in order to give early warning prior to any real queuing. The PCN
marking algorithms have been designed not to take account of packet
size when forwarding through queues. Instead the general principle
has been to take account of the sizes of marked packets when
monitoring the fraction of marking at the edge of the network, as
recommended here.

4.2.3. Making Transports Robust against Control Packet Losses

Recently, two RFCs have defined changes to TCP that make it more
robust against losing small control packets [RFC5562] [RFC5690]. In

both cases they note that the case for these two TCP changes would be
weaker if RED were biased against dropping small packets. We argue
here that these two proposals are a safer and more principled way to
achieve TCP performance improvements than reverse engineering RED to
benefit TCP.

Although there are no known proposals, it would also be possible and
perfectly valid to make control packets robust against drop by
requesting a scheduling class with lower drop probability, by re-
marking to a Diffserv code point [RFC2474] within the same behaviour
aggregate.

Although not brought to the IETF, a simple proposal from Wischik
[DupTCP] suggests that the first three packets of every TCP flow
should be routinely duplicated after a short delay. It shows that
this would greatly improve the chances of short flows completing
quickly, but it would hardly increase traffic levels on the Internet,
because Internet bytes have always been concentrated in the large
flows. It further shows that the performance of many typical
applications depends on completion of long serial chains of short
messages. It argues that, given most of the value people get from
the Internet is concentrated within short flows, this simple
expedient would greatly increase the value of the best efforts
Internet at minimal cost. A similar but more extensive approach has
been evaluated on Google servers [GentleAggro].

The proposals discussed in this sub-section are experimental
approaches that are not yet in wide operational use, but they are
existence proofs that transports can make themselves robust against
loss of control packets. The examples are all TCP-based, but
applications over non-TCP transports could mitigate loss of control
packets by making similar use of Diffserv, data duplication, FEC etc.

Briscoe & Manner Expires May 11, 2014 [Page 23]

Internet-Draft Byte and Packet Congestion Notification November 2013

4.2.4. Congestion Notification: Summary of Conflicting Advice

+ + 4 4 4

transport | RED_1 (packet | RED_4 (linear | RED_5 (square byte |
cc| mode drop) |byte mode drop)| mode drop) |
+ + + + +

|

|

| TCPor| s/sgrt(p) | sart(s/p) | 1/sqrt(p) |
| | | |

|

TFRC |
TFRC-SP | 1/sqgrt(p) | 1/sqgrt(sp) | 1/(s.sqart(p)) |
+ + + + +

Table 2: Dependence of flow bit-rate per RTT on packet size, s, and
drop probability, p, when network and/or transport bias towards small
packets to varying degrees

Table 2 aims to summarise the potential effects of all the advice

from different sources. Each column shows a different possible AQM
behaviour in different queues in the network, using the terminology

of Cnhodder et al outlined earlier (RED_1 is basic RED with packet-

mode drop). Each row shows a different transport behaviour: TCP
[RFC5681] and TFRC [RFC5348] on the top row with TFRC-SP [RFC4828]
below. Each cell shows how the bits per round trip of a flow depends

on packet size, s, and drop probability, p. In order to declutter

the formulae to focus on packet-size dependence they are all given

per round trip, which removes any RTT term.

Let us assume that the goal is for the bit-rate of a flow to be
independent of packet size. Suppressing all inessential details, the
table shows that this should either be achievable by not altering the
TCP transport in a RED_5 network, or using the small packet TFRC-SP
transport (or similar) in a network without any byte-mode dropping

RED (top right and bottom left). Top left is the ‘do nothing’

scenario, while bottom right is the ‘do-both’ scenario in which bit-

rate would become far too biased towards small packets. Of course,

if any form of byte-mode dropping RED has been deployed on a subset
of queues that congest, each path through the network will present a
different hybrid scenario to its transport.

Whatever, we can see that the linear byte-mode drop column in the
middle would considerably complicate the Internet. It's a half-way

house that doesn't bias enough towards small packets even if one
believes the network should be doing the biasing. Section 2
recommends that _all_ bias in network equipment towards small packets
should be turned off--if indeed any equipment vendors have
implemented it--leaving packet-size bias solely as the preserve of

the transport layer (solely the leftmost, packet-mode drop column).

In practice it seems that no deliberate bias towards small packets

Briscoe & Manner Expires May 11, 2014 [Page 24]

Internet-Draft Byte and Packet Congestion Notification November 2013

has been implemented for production networks. Of the 19% of vendors
who responded to a survey of 84 equipment vendors, none had
implemented byte-mode drop in RED (see Appendix A for details).

5. Outstanding Issues and Next Steps
5.1. Bit-congestible Network

For a connectionless network with nearly all resources being bit-
congestible the recommended position is clear--that the network
should not make allowance for packet sizes and the transport should.
This leaves two outstanding issues:

o How to handle any legacy of AQM with byte-mode drop already
deployed,;

0 The need to start a programme to update transport congestion
control protocol standards to take account of packet size.

A survey of equipment vendors (Section 4.2.4) found no evidence that
byte-mode packet drop had been implemented, so deployment will be
sparse at best. A migration strategy is not really needed to remove
an algorithm that may not even be deployed.

A programme of experimental updates to take account of packet size in
transport congestion control protocols has already started with
TFRC-SP [RFC4828].

5.2. Bit- & Packet-congestible Network

The position is much less clear-cut if the Internet becomes populated
by a more even mix of both packet-congestible and bit-congestible
resources (see Appendix B.2). This problem is not pressing, because
most Internet resources are designed to be bit-congestible before
packet processing starts to congest (see Section 1.1).

The IRTF Internet congestion control research group (ICCRG) has set
itself the task of reaching consensus on generic forwarding
mechanisms that are necessary and sufficient to support the

Internet’s future congestion control requirements (the first

challenge in [RFC6077]). The research question of whether packet
congestion might become common and what to do if it does may in the
future be explored in the IRTF (the "Challenge 3: Packet Size" in
[RFC6077]).

Note that sometimes it seems that resources might be congested by

neither bits nor packets, e.g. where the queue for access to a
wireless medium is in units of transmission opportunities. However,

Briscoe & Manner Expires May 11, 2014 [Page 25]

Internet-Draft Byte and Packet Congestion Notification November 2013

the root cause of congestion of the underlying spectrum is overload
of bits (see Section 4.1.2).

6. Security Considerations

This memo recommends that queues do not bias drop probability due to
packets size. For instance dropping small packets less often than

large creates a perverse incentive for transports to break down their
flows into tiny segments. One of the benefits of implementing AQM
was meant to be to remove this perverse incentive that drop-tail

gueues gave to small packets.

In practice, transports cannot all be trusted to respond to

congestion. So another reason for recommending that queues do not
bias drop probability towards small packets is to avoid the
vulnerability to small packet DDoS attacks that would otherwise
result. One of the benefits of implementing AQM was meant to be to
remove drop-tail's DoS vulnerability to small packets, so we

shouldn’t add it back again.

If most queues implemented AQM with byte-mode drop, the resulting
network would amplify the potency of a small packet DDoS attack. At
the first queue the stream of packets would push aside a greater
proportion of large packets, so more of the small packets would
survive to attack the next queue. Thus a flood of small packets
would continue on towards the destination, pushing regular traffic
with large packets out of the way in one queue after the next, but
suffering much less drop itself.

Appendix C explains why the ability of networks to police the
response of _any_ transport to congestion depends on bit-congestible
network resources only doing packet-mode not byte-mode drop. In
summary, it says that making drop probability depend on the size of
the packets that bits happen to be divided into simply encourages the
bits to be divided into smaller packets. Byte-mode drop would
therefore irreversibly complicate any attempt to fix the Internet’s
incentive structures.

7. IANA Considerations
This document has no actions for IANA.

8. Conclusions
This memo identifies the three distinct stages of the congestion
notification process where implementations need to decide whether to

take packet size into account. The recommendations provided in
Section 2 of this memo are different in each case:

Briscoe & Manner Expires May 11, 2014 [Page 26]

Internet-Draft Byte and Packet Congestion Notification November 2013

o When network equipment measures the length of a queue, if it is
not feasible to use time it is recommended to count in bytes if
the network resource is congested by bytes, or to count in packets
if is congested by packets.

o When network equipment decides whether to drop (or mark) a packet,
it is recommended that the size of the particular packet should
not be taken into account

o However, when a transport algorithm responds to a dropped or
marked packet, the size of the rate reduction should be
proportionate to the size of the packet.

In summary, the answers are 'it depends’, 'no’ and 'yes’ respectively

For the specific case of RED, this means that byte-mode queue
measurement will often be appropriate but the use of byte-mode drop
is very strongly discouraged.

At the transport layer the IETF should continue updating congestion
control protocols to take account of the size of each packet that

indicates congestion. Also the IETF should continue to make

protocols less sensitive to losing control packets like SYNs, pure

ACKs and DNS exchanges. Although many control packets happen to be
small, the alternative of network equipment favouring all small

packets would be dangerous. That would create perverse incentives to
split data transfers into smaller packets.

The memo develops these recommendations from principled arguments
concerning scaling, layering, incentives, inherent efficiency,

security and policeability. But it also addresses practical issues

such as specific buffer architectures and incremental deployment.
Indeed a limited survey of RED implementations is discussed, which
shows there appears to be little, if any, installed base of RED’s
byte-mode drop. Therefore it can be deprecated with little, if any,
incremental deployment complications.

The recommendations have been developed on the well-founded basis
that most Internet resources are bit-congestible not packet-
congestible. We need to know the likelihood that this assumption

will prevail longer term and, if it might not, what protocol changes

will be needed to cater for a mix of the two. The IRTF Internet
Congestion Control Research Group (ICCRG) is currently working on
these problems [RFC6077].

Briscoe & Manner Expires May 11, 2014 [Page 27]

Internet-Draft Byte and Packet Congestion Notification November 2013

9. Acknowledgements

Thank you to Sally Floyd, who gave extensive and useful review
comments. Also thanks for the reviews from Philip Eardley, David
Black, Fred Baker, David Taht, Toby Moncaster, Arnaud Jacquet and
Mirja Kuehlewind as well as helpful explanations of different

hardware approaches from Larry Dunn and Fred Baker. We are grateful
to Bruce Davie and his colleagues for providing a timely and

efficient survey of RED implementation in Cisco’s product range.

Also grateful thanks to Toby Moncaster, Will Dormann, John Regnault,
Simon Carter and Stefaan De Cnodder who further helped survey the
current status of RED implementation and deployment and, finally,
thanks to the anonymous individuals who responded.

Bob Briscoe and Jukka Manner were partly funded by Trilogy, a

research project (ICT- 216372) supported by the European Community
under its Seventh Framework Programme. The views expressed here are
those of the authors only.

10. Comments Solicited

Comments and questions are encouraged and very welcome. They can be
addressed to the IETF Transport Area working group mailing list
<tsvwg@ietf.org>, and/or to the authors.

11. References
11.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to
Indicate Requirement Levels", BCP 14,
RFC 2119, March 1997.

[RFC3168] Ramakrishnan, K., Floyd, S., and D. Black,
"The Addition of Explicit Congestion
Notification (ECN) to IP", RFC 3168,
September 2001.

11.2. Informative References

[BLUEO2] Feng, W-c., Shin, K., Kandlur, D., and D.
Saha, "The BLUE active queue management
algorithms", IEEE/ACM Transactions on
Networking 10(4) 513--528, August 2002, <h
ttp://dx.doi.org/10.1109/
TNET.2002.801399>.

[CCvarPktSize] Widmer, J., Boutremans, C., and J-Y. Le

Briscoe & Manner Expires May 11, 2014 [Page 28]

Internet-Draft Byte and Packet Congestion Notification November 2013

Boudec, "Congestion Control for Flows with
Variable Packet Size", ACM CCR 34(2) 137--
151, 2004,

<http://doi.acm.org/10.1145/
997150.997162>.

[CHOKe_Var_Pkt] Psounis, K., Pan, R., and B. Prabhaker,

[DRQ]

[DupTCP]

"Approximate Fair Dropping for Variable
Length Packets", IEEE Micro 21(1):48--56,
January-February 2001, <http://
www.stanford.edu/ balaji/papers/
Olapproximatefair.pdf}>.

Shin, M., Chong, S., and I. Rhee, "Dual-
Resource TCP/AQM for Processing-
Constrained Networks", IEEE/ACM
Transactions on Networking Vol 16, issue
2, April 2008, <http://dx.doi.org/10.1109/
TNET.2007.900415>.

Wischik, D., "Short messages”,
Philosphical Transactions of the Royal
Society A 366(1872):1941-1953, June 2008,
<http://rsta.royalsocietypublishing.org/
content/366/1872/1941.full.pdf+html>.

[ECNFixedWireless] Siris, V., "Resource Control for Elastic

[Evol_cc]

[GentleAggro]

Traffic in CDMA Networks", Proc. ACM
MOBICOM'02 , September 2002, <http://
www.ics.forth.gr/netlab/publications/
resource_control_elastic_cdma.html>.

Gibbens, R. and F. Kelly, "Resource
pricing and the evolution of congestion
control”, Automatica 35(12)1969--1985,
December 1999, <http://
www.statslab.cam.ac.uk/ frank/evol.html>.

Flach, T., Dukkipati, N., Terzis, A.,
Raghavan, B., Cardwell, N., Cheng, Y.,
Jain, A, Hao, S., Katz-Bassett, E., and
R. Govindan, "Reducing Web Latency: the
Virtue of Gentle Aggression”, ACM SIGCOMM
CCR 43(4)159--170, August 2013, <http://
doi.acm.org/10.1145/2486001.2486014>.

[I-D.nichols-tsvwg-codel] Nichols, K. and V. Jacobson, "Controlled

Briscoe & Manner

Delay Active Queue Management",

Expires May 11, 2014 [Page 29]

Internet-Draft Byte and Packet Congestion Notification November 2013

draft-nichols-tsvwg-codel-01 (work in
progress), February 2013.

[I-D.pan-tsvwg-pie] Pan, R., Natarajan, P., Piglione, C., and

[I0OSArch]

[PktSizeEquCC]

[RED93]

[REDDbias]

[REDbyte]

[RFC2309]

Briscoe & Manner

M. Prabhu, "PIE: A Lightweight Control
Scheme To Address the Bufferbloat
Problem", draft-pan-tsvwg-pie-00 (work in
progress), December 2012.

Bollapragada, V., White, R., and C.
Murphy, "Inside Cisco I0S Software
Architecture", Cisco Press: CCIE
Professional Development ISBN13: 978-1-
57870-181-0, July 2000.

Vasallo, P., "Variable Packet Size
Equation-Based Congestion Control", ICSI
Technical Report tr-00-008, 2000, <http://
http.icsi.berkeley.edu/ftp/global/pub/
techreports/2000/tr-00-008.pdf>.

Floyd, S. and V. Jacobson, "Random Early
Detection (RED) gateways for Congestion
Avoidance", IEEE/ACM Transactions on
Networking 1(4) 397--413, August 1993, <ht
tp:/iwwwe.icir.org/floyd/papers/red/
red.html>.

Eddy, W. and M. Allman, "A Comparison of
RED’s Byte and Packet Modes", Computer
Networks 42(3) 261--280, June 2003, <http:
[Iwww.ir.bbn.com/documents/articles/
redbias.ps>.

De Cnodder, S., Elloumi, O., and K.
Pauwels, "RED behavior with different
packet sizes", Proc. 5th IEEE Symposium on
Computers and Communications (ISCC) 793--
799, July 2000, <http://www.icir.org/
floyd/red/Elloumi99.pdf>.

Braden, B., Clark, D., Crowcroft, J.,
Davie, B., Deering, S., Estrin, D., Floyd,
S., Jacobson, V., Minshall, G., Partridge,
C., Peterson, L., Ramakrishnan, K.,
Shenker, S., Wroclawski, J., and L. Zhang,
"Recommendations on Queue Management and
Congestion Avoidance in the Internet",

Expires May 11, 2014 [Page 30]

Internet-Draft Byte and Packet Congestion Notification November 2013

[RFC2474]

[RFC2914]

[RFC3426]

[RFC3550]

[RFC3714]

[RFC4828]

[RFC5348]

[RFC5562]

[RFC5670]

[RFC5681]

Briscoe & Manner

RFC 2309, April 1998.

Nichols, K., Blake, S., Baker, F., and D.
Black, "Definition of the Differentiated
Services Field (DS Field) in the IPv4 and
IPv6 Headers", RFC 2474, December 1998.

Floyd, S., "Congestion Control
Principles”, BCP 41, RFC 2914,
September 2000.

Floyd, S., "General Architectural and
Policy Considerations", RFC 3426,
November 2002.

Schulzrinne, H., Casner, S., Frederick,
R., and V. Jacobson, "RTP: A Transport
Protocol for Real-Time Applications",
STD 64, RFC 3550, July 2003.

Floyd, S. and J. Kempf, "IAB Concerns
Regarding Congestion Control for Voice
Traffic in the Internet”, RFC 3714,

March 2004.

Floyd, S. and E. Kohler, "TCP Friendly
Rate Control (TFRC): The Small-Packet (SP)
Variant", RFC 4828, April 2007.

Floyd, S., Handley, M., Padhye, J., and J.
Widmer, "TCP Friendly Rate Control (TFRC):
Protocol Specification”, RFC 5348,

September 2008.

Kuzmanovic, A., Mondal, A., Floyd, S., and
K. Ramakrishnan, "Adding Explicit
Congestion Notification (ECN) Capability
to TCP’s SYN/ACK Packets", RFC 5562,
June 20089.

Eardley, P., "Metering and Marking
Behaviour of PCN-Nodes", RFC 5670,
November 2009.

Allman, M., Paxson, V., and E. Blanton,

"TCP Congestion Control", RFC 5681,
September 2009.

Expires May 11, 2014 [Page 31]

Internet-Draft Byte and Packet Congestion Notification November 2013

[RFC5690] Floyd, S., Arcia, A., Ros, D., and J.
lyengar, "Adding Acknowledgement
Congestion Control to TCP", RFC 5690,
February 2010.

[RFC6077] Papadimitriou, D., Welzl, M., Scharf, M.,
and B. Briscoe, "Open Research Issues in
Internet Congestion Control", RFC 6077,
February 2011.

[RFC6679] Westerlund, M., Johansson, |., Perkins,
C., O’'Hanlon, P., and K. Carlberg,
"Explicit Congestion Notification (ECN)
for RTP over UDP", RFC 6679, August 2012.

[RFC6789] Briscoe, B., Woundy, R., and A. Cooper,
"Congestion Exposure (ConEx) Concepts and
Use Cases", RFC 6789, December 2012.

[Rate_fair_Dis] Briscoe, B., "Flow Rate Fairness:
Dismantling a Religion”, ACM
CCR 37(2)63--74, April 2007, <http://
portal.acm.org/citation.cfm?id=1232926>.

[gentle_RED] Floyd, S., "Recommendation on using the
"gentle_" variant of RED", Web page ,
March 2000, <http://www.icir.org/floyd/
red/gentle.html>.

[pBoX] Floyd, S. and K. Fall, "Promoting the Use
of End-to-End Congestion Control in the
Internet”, IEEE/ACM Transactions on
Networking 7(4) 458--472, August 1999, <ht
tp://www.aciri.org/floyd/
end2end-paper.html>.

[pktByteEmail] Floyd, S., "RED: Discussions of Byte and
Packet Modes", email , March 1997, <http:/
www-nrg.ee.lbl.gov/floyd/
REDaveraging.txt>.
Appendix A. Survey of RED Implementation Status
This Appendix is informative, not normative.
In May 2007 a survey was conducted of 84 vendors to assess how widely

drop probability based on packet size has been implemented in RED
Table 3. About 19% of those surveyed replied, giving a sample size

Briscoe & Manner Expires May 11, 2014 [Page 32]

Internet-Draft Byte and Packet Congestion Notification November 2013

of 16. Although in most cases we do not have permission to identify
the respondents, we can say that those that have responded include
most of the larger equipment vendors, covering a large fraction of

the market. The two who gave permission to be identified were Cisco
and Alcatel-Lucent. The others range across the large network
equipment vendors at L3 & L2, firewall vendors, wireless equipment
vendors, as well as large software businesses with a small selection
of networking products. All those who responded confirmed that they
have not implemented the variant of RED with drop dependent on packet
size (2 were fairly sure they had not but needed to check more
thoroughly). At the time the survey was conducted, Linux did not
implement RED with packet-size bias of drop, although we have not
investigated a wider range of open source code.

+ + + +

| Response | No. of vendors | %age of vendors |
+ + + +

| Not implemented | 14| 17% |

| Notimplemented (probably) | 2] 2% |

| Implemented | 0] 0% |

| No response | 68 | 81% |

| Total companies/orgs surveyed | 84 | 100% |
+ + + +

Table 3: Vendor Survey on byte-mode drop variant of RED (lower drop
probability for small packets)

Where reasons have been given, the extra complexity of packet bias
code has been most prevalent, though one vendor had a more principled
reason for avoiding it--similar to the argument of this document.

Our survey was of vendor implementations, so we cannot be certain
about operator deployment. But we believe many queues in the
Internet are still tail-drop. The company of one of the co-authors

(BT) has widely deployed RED, but many tail-drop queues are bound to
still exist, particularly in access network equipment and on

middleboxes like firewalls, where RED is not always available.

Routers using a memory architecture based on fixed size buffers with
borrowing may also still be prevalent in the Internet. As explained

in Section 4.2.1, these also provide a marginal (but legitimate) bias
towards small packets. So even though RED byte-mode drop is not
prevalent, it is likely there is still some bias towards smalll

packets in the Internet due to tail drop and fixed buffer borrowing.

Briscoe & Manner Expires May 11, 2014 [Page 33]

Internet-Draft Byte and Packet Congestion Notification November 2013

Appendix B. Sufficiency of Packet-Mode Drop
This Appendix is informative, not normative.

Here we check that packet-mode drop (or marking) in the network gives
sufficiently generic information for the transport layer to use. We

check against a 2x2 matrix of four scenarios that may occur now or in
the future (Table 4). The horizontal and vertical dimensions have

been chosen because each tests extremes of sensitivity to packet size
in the transport and in the network respectively.

Note that this section does not consider byte-mode drop at all.
Having deprecated byte-mode drop, the goal here is to check that
packet-mode drop will be sufficient in all cases.

+ + + +
| Transport | a) Independent | b) Dependent on |
| | of packet size | packet size of |

| Network | of congestion | congestion |

| | notifications | notifications |

+ + + +

| 1) Predominantly | Scenario al) | Scenario bl) |

| bit-congestible network | |
| 2) Mix of bit-congestible and | Scenario a2) | Scenario b2) |
| pkt-congestible network |

4 4 4
T T T

Table 4: Four Possible Congestion Scenarios

Appendix B.1 focuses on the horizontal dimension of Table 4 checking
that packet-mode drop (or marking) gives sufficient information,
whether or not the transport uses it--scenarios b) and a)

respectively.

Appendix B.2 focuses on the vertical dimension of Table 4, checking
that packet-mode drop gives sufficient information to the transport
whether resources in the network are bit-congestible or packet-
congestible (these terms are defined in Section 1.1).

Notation: To be concrete, we will compare two flows with different
packet sizes, s_1 and s_2. As an example, we will take s_1 = 60B
=480b and s_2 = 1500B = 12,000b.

A flow's bit rate, x [bps], is related to its packet rate, u
[pps], by

X(t) = s.u(t).

Briscoe & Manner Expires May 11, 2014 [Page 34]

Internet-Draft Byte and Packet Congestion Notification November 2013

In the bit-congestible case, path congestion will be denoted by
p_b, and in the packet-congestible case by p_p. When either case
is implied, the letter p alone will denote path congestion.

B.1. Packet-Size (In)Dependence in Transports

In all cases we consider a packet-mode drop queue that indicates
congestion by dropping (or marking) packets with probability p
irrespective of packet size. We use an example value of loss
(marking) probability, p=0.1%.

A transport like RFC5681 TCP treats a congestion notification on any
packet whatever its size as one event. However, a network with just
the packet-mode drop algorithm does give more information if the
transport chooses to use it. We will use Table 5 to illustrate this.

We will set aside the last column until later. The columns labelled
"Flow 1" and "Flow 2" compare two flows consisting of 60B and 1500B
packets respectively. The body of the table considers two separate
cases, one where the flows have equal bit-rate and the other with
equal packet-rates. In both cases, the two flows fill a 96Mbps link.
Therefore, in the equal bit-rate case they each have half the bit-

rate (48Mbps). Whereas, with equal packet-rates, flow 1 uses 25
times smaller packets so it gets 25 times less bit-rate--it only gets
1/(1+25) of the link capacity (96Mbps/26 = 4Mbps after rounding). In
contrast flow 2 gets 25 times more bit-rate (92Mbps) in the equal
packet rate case because its packets are 25 times larger. The packet
rate shown for each flow could easily be derived once the bit-rate

was known by dividing bit-rate by packet size, as shown in the column
labelled "Formula”.

Briscoe & Manner Expires May 11, 2014 [Page 35]

Internet-Draft Byte and Packet Congestion Notification November 2013

Parameter Formula Flow 1 Flow 2 Combined
Packet size s/8 60B 1,500B (Mix)
Packet size s 480b 12,000b (Mix)

Pkt loss probability p 0.1% 0.1% 0.1%
EQUAL BIT-RATE CASE

Bit-rate X 48Mbps 48Mbps 96Mbps
Packet-rate u=x/s 100kpps 4kpps 104kpps
Absolute pkt-loss-rate p*u 100pps 4pps 104pps
Absolute bit-loss-rate p*u*s 48kbps 48kbps 96kbps
Ratio of lost/sent pkts p*u/u 0.1% 0.1% 0.1%

Ratio of lost/sent bits p*u*s/(u*s) 0.1% 0.1% 0.1%

EQUAL PACKET-RATE CASE

Bit-rate X 4Mbps 92Mbps 96Mbps
Packet-rate u=x/s 8kpps 8kpps 15kpps
Absolute pkt-loss-rate p*u 8pps 8pps 15pps
Absolute bit-loss-rate p*u*s 4kbps 92kbps 96kbps
Ratio of lost/sent pkts p*u/u 0.1% 0.1% 0.1%

Ratio of lost/sent bits p*u*s/(u*s) 0.1% 0.1% 0.1%

Table 5: Absolute Loss Rates and Loss Ratios for Flows of Small and
Large Packets and Both Combined

So far we have merely set up the scenarios. We now consider
congestion notification in the scenario. Two TCP flows with the same
round trip time aim to equalise their packet-loss-rates over time.

That is the number of packets lost in a second, which is the packets
per second (u) multiplied by the probability that each one is dropped
(p). Thus TCP converges on the "Equal packet-rate" case, where both
flows aim for the same "Absolute packet-loss-rate” (both 8pps in the
table).

Packet-mode drop actually gives flows sufficient information to
measure their loss-rate in bits per second, if they choose, not just
packets per second. Each flow can count the size of a lost or marked
packet and scale its rate-response in proportion (as TFRC-SP does).
The result is shown in the row entitled "Absolute bit-loss-rate",
where the bits lost in a second is the packets per second (u)
multiplied by the probability of losing a packet (p) multiplied by

the packet size (s). Such an algorithm would try to remove any
imbalance in bit-loss-rate such as the wide disparity in the "Equal
packet-rate" case (4kbps vs. 92kbps). Instead, a packet-size-
dependent algorithm would aim for equal bit-loss-rates, which would
drive both flows towards the "Equal bit-rate” case, by driving them

to equal bit-loss-rates (both 48kbps in this example).

Briscoe & Manner Expires May 11, 2014 [Page 36]

Internet-Draft Byte and Packet Congestion Notification November 2013

The explanation so far has assumed that each flow consists of packets
of only one constant size. Nonetheless, it extends naturally to

flows with mixed packet sizes. In the right-most column of Table 5 a
flow of mixed size packets is created simply by considering flow 1

and flow 2 as a single aggregated flow. There is no need for a flow

to maintain an average packet size. It is only necessary for the
transport to scale its response to each congestion indication by the
size of each individual lost (or marked) packet. Taking for example
the "Equal packet-rate" case, in one second about 8 small packets and
8 large packets are lost (making closer to 15 than 16 losses per
second due to rounding). If the transport multiplies each loss by

its size, in one second it responds to 8*480b and 8*12,000b lost

bits, adding up to 96,000 lost bits in a second. This double checks
correctly, being the same as 0.1% of the total bit-rate of 96Mbps.

For completeness, the formula for absolute bit-loss-rate is p(ul*s1+
u2*s2).

Incidentally, a transport will always measure the loss probability

the same irrespective of whether it measures in packets or in bytes.
In other words, the ratio of lost to sent packets will be the same as
the ratio of lost to sent bytes. (This is why TCP’s bit rate is

still proportional to packet size even when byte-counting is used, as
recommended for TCP in [RFC5681], mainly for orthogonal security
reasons.) This is intuitively obvious by comparing two example
flows; one with 60B packets, the other with 1500B packets. If both
flows pass through a queue with drop probability 0.1%, each flow will
lose 1 in 1,000 packets. In the stream of 60B packets the ratio of
bytes lost to sent will be 60B in every 60,000B; and in the stream of
1500B packets, the loss ratio will be 1,500B out of 1,500,000B. When
the transport responds to the ratio of lost to sent packets, it will
measure the same ratio whether it measures in packets or bytes: 0.1%
in both cases. The fact that this ratio is the same whether measured
in packets or bytes can be seen in Table 5, where the ratio of lost

to sent packets and the ratio of lost to sent bytes is always 0.1% in

all cases (recall that the scenario was set up with p=0.1%).

This discussion of how the ratio can be measured in packets or bytes

is only raised here to highlight that it is irrelevant to this memo!

Whether a transport depends on packet size or not depends on how this
ratio is used within the congestion control algorithm.

So far we have shown that packet-mode drop passes sufficient
information to the transport layer so that the transport can take
account of bit-congestion, by using the sizes of the packets that
indicate congestion. We have also shown that the transport can
choose not to take packet size into account if it wishes. We will
now consider whether the transport can know which to do.

Briscoe & Manner Expires May 11, 2014 [Page 37]

Internet-Draft Byte and Packet Congestion Notification November 2013

B.2. Bit-Congestible and Packet-Congestible Indications

As a thought-experiment, imagine an idealised congestion notification
protocol that supports both bit-congestible and packet-congestible
resources. It would require at least two ECN flags, one for each of
bit-congestible and packet-congestible resources.

1. A packet-congestible resource trying to code congestion level p_p
into a packet stream should mark the idealised ‘packet
congestion’ field in each packet with probability p_p
irrespective of the packet’'s size. The transport should then
take a packet with the packet congestion field marked to mean
just one mark, irrespective of the packet size.

2. A bit-congestible resource trying to code time-varying byte-
congestion level p_b into a packet stream should mark the ‘byte
congestion’ field in each packet with probability p_b, again
irrespective of the packet'’s size. Unlike before, the transport
should take a packet with the byte congestion field marked to
count as a mark on each byte in the packet.

This hides a fundamental problem--much more fundamental than whether
we can magically create header space for yet another ECN flag, or
whether it would work while being deployed incrementally.

Distinguishing drop from delivery naturally provides just one

implicit bit of congestion indication information--the packet is

either dropped or not. Itis hard to drop a packet in two ways that

are distinguishable remotely. This is a similar problem to that of
distinguishing wireless transmission losses from congestive losses.

This problem would not be solved even if ECN were universally
deployed. A congestion notification protocol must survive a
transition from low levels of congestion to high. Marking two states
is feasible with explicit marking, but much harder if packets are
dropped. Also, it will not always be cost-effective to implement AQM
at every low level resource, so drop will often have to suffice.

We are not saying two ECN fields will be needed (and we are not
saying that somehow a resource should be able to drop a packet in one
of two different ways so that the transport can distinguish which

sort of drop it was!). These two congestion notification channels

are a conceptual device to illustrate a dilemma we could face in the
future. Section 3 gives four good reasons why it would be a bad idea
to allow for packet size by biasing drop probability in favour of

small packets within the network. The impracticality of our thought
experiment shows that it will be hard to give transports a practical
way to know whether to take account of the size of congestion
indication packets or not.

Briscoe & Manner Expires May 11, 2014 [Page 38]

Internet-Draft Byte and Packet Congestion Notification November 2013

Fortunately, this dilemma is not pressing because by design most
equipment becomes bit-congested before its packet-processing becomes
congested (as already outlined in Section 1.1). Therefore transports

can be designed on the relatively sound assumption that a congestion
indication will usually imply bit-congestion.

Nonetheless, although the above idealised protocol isn't intended for
implementation, we do want to emphasise that research is needed to
predict whether there are good reasons to believe that packet
congestion might become more common, and if so, to find a way to
somehow distinguish between bit and packet congestion [RFC3714].

Recently, the dual resource queue (DRQ) proposal [DRQ] has been made
on the premise that, as network processors become more cost

effective, per packet operations will become more complex

(irrespective of whether more function in the network is desirable).
Consequently the premise is that CPU congestion will become more
common. DRQ is a proposed modification to the RED algorithm that
folds both bit congestion and packet congestion into one signal

(either loss or ECN).

Finally, we note one further complication. Strictly, packet-
congestible resources are often cycle-congestible. For instance, for
routing look-ups load depends on the complexity of each look-up and
whether the pattern of arrivals is amenable to caching or not. This
also reminds us that any solution must not require a forwarding
engine to use excessive processor cycles in order to decide how to
say it has no spare processor cycles.

Appendix C. Byte-mode Drop Complicates Policing Congestion Response
This section is informative, not normative.

There are two main classes of approach to policing congestion
response: i) policing at each bottleneck link or ii) policing at the
edges of networks. Packet-mode drop in RED is compatible with
either, while byte-mode drop precludes edge policing.

The simplicity of an edge policer relies on one dropped or marked
packet being equivalent to another of the same size without having to
know which link the drop or mark occurred at. However, the byte-mode
drop algorithm has to depend on the local MTU of the line--it needs

to use some concept of a 'normal’ packet size. Therefore, one
dropped or marked packet from a byte-mode drop algorithm is not
necessarily equivalent to another from a different link. A policing
function local to the link can know the local MTU where the

congestion occurred. However, a policer at the edge of the network
cannot, at least not without a lot of complexity.

Briscoe & Manner Expires May 11, 2014 [Page 39]

Internet-Draft Byte and Packet Congestion Notification November 2013

The early research proposals for type (i) policing at a bottleneck

link [pBox] used byte-mode drop, then detected flows that contributed
disproportionately to the number of packets dropped. However, with
no extra complexity, later proposals used packet mode drop and looked
for flows that contributed a disproportionate amount of dropped bytes
[CHOKe_Var_Pkt].

Work is progressing on the congestion exposure protocol (ConEx
[RFC6789]), which enables a type (ii) edge policer located at a

user’s attachment point. The idea is to be able to take an

integrated view of the effect of all a user’s traffic on any link in

the internetwork. However, byte-mode drop would effectively preclude
such edge policing because of the MTU issue above.

Indeed, making drop probability depend on the size of the packets
that bits happen to be divided into would simply encourage the bits
to be divided into smaller packets in order to confuse policing. In
contrast, as long as a dropped/marked packet is taken to mean that
all the bytes in the packet are dropped/marked, a policer can remain

robust against bits being re-divided into different size packets or
across different size flows [Rate_fair_Dis].

Appendix D. Changes from Previous Versions
To be removed by the RFC Editor on publication.
Full incremental diffs between each version are available at
<http://tools.ietf.org/wg/tsvwg/draft-ietf-tsvwg-byte-pkt-congest/>
(courtesy of the rfcdiff tool):
From -11 to -12: Following the second pass through the IESG:
* Section 2.1 [Barry Leiba]:

+ s/No other choice makes sense,/Subject to the exceptions
below, no other choice makes sense,/

+ s/Exceptions to these recommendations MAY be necessary
/Exceptions to these recommendations may be necessary /

* Sections 3.2 and 4.2.3 [Joel Jaeggli]:
+ Added comment to section 4.2.3 that the examples given are
not in widespread production use, but they give evidence

that it is possible to follow the advice given.

+ Section 4.2.3:

Briscoe & Manner Expires May 11, 2014 [Page 40]

Internet-Draft Byte and Packet Congestion Notification November 2013

- OLD: Although there are no known proposals, it would also
be possible and perfectly valid to make control packets
robust against drop by explicitly requesting a lower drop
probability using their Diffserv code point [RFC2474] to
request a scheduling class with lower drop.

NEW: Although there are no known proposals, it would also
be possible and perfectly valid to make control packets
robust against drop by requesting a scheduling class with
lower drop probability, by re-marking to a Diffserv code
point [RFC2474] within the same behaviour aggregate.

- appended "Similarly applications, over non-TCP transports
could make any packets that are effectively control
packets more robust by using Diffserv, data duplication,
FEC etc."

+ Updated Wischik ref and added "Reducing Web Latency: the
Virtue of Gentle Aggression" ref.

* Expanded more abbreviations (CoDel, PIE, MTU).
* Section 1. Intro [Stephen Farrell]:

+ In the places where the doc desribes the dichotomy between
'long-term goal’ and 'expediency’ the words long term goal
and expedient have been introduced, to more explicitly refer
back to this introductory para (S.2.1 & S.2.3).

+ Added explanation of what scaling with packet size means.

* Conclusions [Benoit Claise]:

+ OLD: For the specific case of RED, this means that byte-mode
queue measurement will often be appropriate although byte-
mode drop is strongly deprecated.

NEW: For the specific case of RED, this means that byte-mode
queue measurement will often be appropriate but the use of
byte-mode drop is very strongly discouraged.

From -10 to -11: Following a further WGLC:

* Abstract: clarified that advice applies to all AQMs including
newer ones

* Abstract & Intro: changed 'read’ to 'detect’, because you don’t
read losses, you detect them.

Briscoe & Manner Expires May 11, 2014 [Page 41]

Internet-Draft Byte and Packet Congestion Notification November 2013

* S.1. Introduction: Disambiguated summary of advice on queue
measurement.

* Clarified that the doc deprecates any preference based solely
on packet size, it's not only against preferring smaller
packets.

* S.4.1.2. Congestion Measurement without a Queue: Explained
that a queue of TXOPs represents a queue into spectrum
congested by too many bits.

* S.5.2: Bit- & Packet-congestible Network: Referred to
explanation in S.4.1.2 to make the point that TXOPs are not a
primary unit of workload like bits and packets are, even though
you get queues of TXOPSs.

* 6. Security: Disambiguated ’bias towards’.

* 8. Conclusions: Made consistent with recommendation to use
time if possible for queue measurement.

From -09 to -10: Following IESG review:

* Updates 2309: Left header unchanged reflecting eventual IESG
consensus [Sean Turner, Pete Resnick].

* S.1 Intro: This memo adds to the congestion control principles
enumerated in BCP 41 [Pete Resnick]

* Abstract, S.1, S.1.1, s.1.2 Intro, Scoping and Example: Made
applicability to all AQMs clearer listing some more example
AQMs and explained that we always use RED for examples, but
this doesn’t mean it's not applicable to other AQMs. [A number
of reviewers have described the draft as "about RED"]

* S.1 & S.2.1 Queue measurement: Explained that the choice
between measuring the queue in packets or bytes is only
relevant if measuring it in time units is infeasible [So as not
to imply that we haven't noticed the advances made by PDPC &
CoDel]

* S.1.1. Terminology: Better explained why hybrid systems
congested by both packets and bytes are often designed to be
treated as bit-congestible [Richard Barnes].

* S.2.1. Queue measurement advice: Added examples. Added a

counter-example to justify SHOULDs rather than MUSTs. Pointed
to S.4.1 for a list of more complicated scenarios. [Benson

Briscoe & Manner Expires May 11, 2014 [Page 42]

Internet-Draft Byte and Packet Congestion Notification November 2013

Schliesser, OpsDir]

* S2.2. Recommendation on Encoding Congestion Notification:
Removed SHOULD treat packets equally, leaving only SHOULD NOT
drop dependent on packet size, to avoid it sounding like we're
saying QoS is not allowed. Pointed to possible app-specific
legacy use of byte-mode as a counter-example that prevents us
saying MUST NOT. [Pete Resnick]

* S.2.3. Recommendation on Responding to Congestion: capitalised
the two SHOULDs in recommendations for TCP, and gave possible
counter-examples. [noticed while dealing with Pete Resnick’s
point]

* S2.4. Splitting & Merging: RTCP -> RTP/RTCP [Pete McCann, Gen-
ART]

* S.3.2 Small != Control: many control packets are small ->
...tend to be small [Stephen Farrell]

* S.3.1 Perverse incentives: Changed transport designers to app
developers [Stephen Farrell]

* S.4.1.1. Fixed Size Packet Buffers: Nearly completely re-
written to simplify and to reverse the advice when the
underlying resource is bit-congestible, irrespective of whether
the buffer consists of fixed-size packet buffers. [Richard
Barnes & Benson Schliesser]

* S.4.2.1.2. Packet Size Bias Regardless of AQM: Largely re-
written to reflect the earlier change in advice about fixed-
size packet buffers, and to primarily focus on getting rid of
tail-drop, not various nuances of tail-drop. [Richard Barnes &
Benson Schliesser]

*

Editorial corrections [Tim Bray, AppsDir, Pete McCann, Gen-ART
and others]

* Updated refs (two I-Ds have become RFCs). [Pete McCann]
From -08 to -09: Following WG last call:

* S.2.1: Made RED-related queue measurement recommendations
clearer

* S.2.3: Added to "Recommendation on Responding to Congestion" to

make it clear that we are definitely not saying transports have
to equalise bit-rates, just how to do it and not do it, if you

Briscoe & Manner Expires May 11, 2014 [Page 43]

Internet-Draft Byte and Packet Congestion Notification November 2013

want to.

* S.3: Clarified motivation sections S.3.3 "Transport-Independent
Network" and S.3.5 "Implementation Efficiency"

* S.3.4: Completely changed motivating argument from "Scaling
Congestion Control with Packet Size" to "Partial Deployment of
AQM".

From -07 to -08:

* Altered abstract to say it provides best current practice and
highlight that it updates RFC2309

* Added null IANA section
* Updated refs
From -06 to -07:

* A mix-up with the corollaries and their naming in 2.1 to 2.3
fixed.

From -05 to -06:
* Primarily editorial fixes.
From -04 to -05:

* Changed from Informational to BCP and highlighted non-normative
sections and appendices

* Removed language about consensus

* Added "Example Comparing Packet-Mode Drop and Byte-Mode Drop"

* Arranged "Motivating Arguments"” into a more logical order and
completely rewrote "Transport-Independent Network" & "Scaling
Congestion Control with Packet Size" arguments. Removed "Why
Now?"

* Clarified applicability of certain recommendations

* Shifted vendor survey to an Appendix

* Cut down "Outstanding Issues and Next Steps"

Briscoe & Manner Expires May 11, 2014 [Page 44]

Internet-Draft Byte and Packet Congestion Notification November 2013

* Re-drafted the start of the conclusions to highlight the three
distinct areas of concern

* Completely re-wrote appendices
* Editorial corrections throughout.
From -03 to -04:

* Reordered Sections 2 and 3, and some clarifications here and
there based on feedback from Colin Perkins and Mirja
Kuehlewind.

From -02 to -03 (this version)
* Structural changes:

+ Split off text at end of "Scaling Congestion Control with
Packet Size" into new section "Transport-Independent
Network"

+ Shifted "Recommendations" straight after "Motivating
Arguments" and added "Conclusions" at end to reinforce
Recommendations

+ Added more internal structure to Recommendations, so that
recommendations specific to RED or to TCP are just
corollaries of a more general recommendation, rather than
being listed as a separate recommendation.

+ Renamed "State of the Art" as "Critical Survey of Existing
Advice" and retitled a number of subsections with more
descriptive titles.

+ Split end of "Congestion Coding: Summary of Status" into a
new subsection called "RED Implementation Status".

+ Removed text that had been in the Appendix "Congestion
Notification Definition: Further Justification".

* Reordered the intro text a little.

* Made it clearer when advice being reported is deprecated and
when it is not.

* Described AQM as in network equipment, rather than saying "at

the network layer" (to side-step controversy over whether
functions like AQM are in the transport layer but in network

Briscoe & Manner Expires May 11, 2014 [Page 45]

Internet-Draft Byte and Packet Congestion Notification November 2013

equipment).
* Minor improvements to clarity throughout
From -01 to -02:
* Restructured the whole document for (hopefully) easier reading
and clarity. The concrete recommendation, in RFC2119 language,
is now in Section 8.
From -00 to -01:
* Minor clarifications throughout and updated references
From briscoe-byte-pkt-mark-02 to ietf-byte-pkt-congest-00:
* Added note on relationship to existing RFCs
* Posed the question of whether packet-congestion could become
common and deferred it to the IRTF ICCRG. Added ref to the
dual-resource queue (DRQ) proposal.
* Changed PCN references from the PCN charter & architecture to
the PCN marking behaviour draft most likely to imminently
become the standards track WG item.

From -01 to -02:

* Abstract reorganised to align with clearer separation of issue
in the memo.

* Introduction reorganised with motivating arguments removed to
new Section 3.

* Clarified avoiding lock-out of large packets is not the main or
only motivation for RED.

* Mentioned choice of drop or marking explicitly throughout,
rather than trying to coin a word to mean either.

* Generalised the discussion throughout to any packet forwarding
function on any network equipment, not just routers.

* Clarified the last point about why this is a good time to sort
out this issue: because it will be hard / impossible to design
new transports unless we decide whether the network or the
transport is allowing for packet size.

Briscoe & Manner Expires May 11, 2014 [Page 46]

Internet-Draft Byte and Packet Congestion Notification November 2013

* Added statement explaining the horizon of the memo is long
term, but with short term expediency in mind.

* Added material on scaling congestion control with packet size
(Section 3.4).

* Separated out issue of normalising TCP’s bit rate from issue of
preference to control packets (Section 3.2).

* Divided up Congestion Measurement section for clarity,
including new material on fixed size packet buffers and buffer
carving (Section 4.1.1 & Section 4.2.1) and on congestion
measurement in wireless link technologies without queues
(Section 4.1.2).

* Added section on 'Making Transports Robust against Control
Packet Losses’ (Section 4.2.3) with existing & new material
included.

* Added tabulated results of vendor survey on byte-mode drop
variant of RED (Table 3).

From -00 to -01:

* Clarified applicability to drop as well as ECN.

* Highlighted DoS vulnerability.

* Emphasised that drop-tail suffers from similar problems to
byte-mode drop, so only byte-mode drop should be turned off,
not RED itself.

* Clarified the original apparent motivations for recommending
byte-mode drop included protecting SYNs and pure ACKs more than
equalising the bit rates of TCPs with different segment sizes.

Removed some conjectured motivations.

* Added support for updates to TCP in progress (ackcc & ecn-syn-
ack).

* Updated survey results with newly arrived data.
* Pulled all recommendations together into the conclusions.

* Moved some detailed points into two additional appendices and a
note.

Briscoe & Manner Expires May 11, 2014 [Page 47]

Internet-Draft Byte and Packet Congestion Notification November 2013

* Considerable clarifications throughout.
* Updated references
Authors’ Addresses

Bob Briscoe

BT

B54/77, Adastral Park
Martlesham Heath
Ipswich IP5 3RE

UK

Phone: +44 1473 645196
EMail: bob.briscoe@bt.com
URI: http://bobbriscoe.net/

Jukka Manner

Aalto University

Department of Communications and Networking (Comnet)
P.O. Box 13000

FIN-00076 Aalto

Finland

Phone: +358 9 470 22481

EMail: jukka.manner@aalto.fi
URI: http://www.netlab.tkk.fi/jmanner/

Briscoe & Manner Expires May 11, 2014 [Page 48]

Transport Area Working Group M. Cotton

Internet-Draft ICANN
Updates: 2780, 2782, 3828, 4340, L. Eggert
4960, 5595 (if approved) Nokia
Intended status: BCP J. Touch
Expires: August 16, 2011 uUsc/Isl
M. Westerlund
Ericsson
S. Cheshire
Apple

February 12, 2011

Internet Assigned Numbers Authority (IANA) Procedures for the Management
of the Service Name and Transport Protocol Port Number Registry
draft-ietf-tsvwg-iana-ports-10

Abstract

This document defines the procedures that the Internet Assigned
Numbers Authority (IANA) uses when handling assignment and other
requests related to the Service Name and Transport Protocol Port
Number Registry. It also discusses the rationale and principles
behind these procedures and how they facilitate the long-term
sustainability of the registry.

This document updates IANA’s procedures by obsoleting the previous

UDP and TCP port assignment procedures defined in Sections 8 and 9.1

of the IANA allocation guidelines [RFC2780], and it updates the IANA

Service Name and Port assignment procedures for UDP-Lite [RFC3828],
DCCP [RFC4340] [RFC5595] and SCTP [RFC4960]. It also updates the DNS
SRV specification [RFC2782] to clarify what a service name is and how

it is registered.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

Cotton, et al. Expires August 16, 2011 [Page 1]

Internet-Draft Service Name and Port Number Procedures February 2011

This Internet-Draft will expire on August 16, 2011.
Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.

Cotton, et al. Expires August 16, 2011 [Page 2]

Internet-Draft Service Name and Port Number Procedures February 2011

Table of Contents

Introduction oL 4
Motivation 5
Background, 6
Conventions Used in this Document 8
. ServiceNames 8
5.1. Service Name Syntax 9
5.2. Service Name Usage in DNS SRV Records 10
6. Port NumberRanges 11
6.1. Service names and Port Numbers for Experimentation 12
7. Principles for Service Name and Transport Protocol Port
Number Registry Management 12
7.1. PastPrinciples 13
7.2. Updated Principles 13
8. IANA Procedures for Managing the Service Name and
Transport Protocol Port Number Registry 16
8.1. Service Name and Port Number Assignment 16
8.2. Service Name and Port Number De-Assignment 20
8.3. Service Name and Port Number Reuse 21
8.4. Service Name and Port Number Revocation 21
8.5. Service Name and Port Number Transfers 22
8.6. Maintenancelssues.................... 22
8.7. Disagreements 23
9. Security Considerations 23
10. IANA Considerations 23
10.1. Service Name Consistency 24
10.2. Port Numbers for SCTP and DCCP Experimentation 25
10.3. Updates to DCCP Registries 26
11.Contributors 27
12. Acknowledgments 28
13.References 28
13.1. Normative References 28
13.2. Informative References 29
Authors’ Addresses 31

arwdE

Cotton, et al. Expires August 16, 2011 [Page 3]

Internet-Draft Service Name and Port Number Procedures February 2011

1. Introduction

For many years, the assignment of new service names and port number
values for use with the Transmission Control Protocol (TCP) [RFC0793]
and the User Datagram Protocol (UDP) [RFC0768] have had less than
clear guidelines. New transport protocols have been added - the

Stream Control Transmission Protocol (SCTP) [RFC4960] and the
Datagram Congestion Control Protocol (DCCP) [RFC4342] - and new
mechanisms like DNS SRV records [RFC2782] have been developed, each
with separate registries and separate guidelines. The community also
recognized the need for additional procedures beyond just assignment;
notably modification, revocation, and release.

A key element of the procedural streamlining specified in this
document is to establish identical assignment procedures for all IETF
transport protocols. This document brings the IANA procedures for
TCP and UDP in line with those for SCTP and DCCP, resulting in a
single process that requesters and IANA follow for all requests for

all transport protocols, including future protocols not yet defined.

In addition to detailing the IANA procedures for the initial

assignment of service names and port numbers, this document also
specifies post-assignment procedures that until now have been handled
in an ad hoc manner. These include procedures to de-assign a port
number that is no longer in use, to take a port number assigned for

one service that is no longer in use and reuse it for another

service, and the procedure by which IANA can unilaterally revoke a
prior port number assignment. Section 8 discusses the specifics of
these procedures and processes that requesters and IANA follow for

all requests for all current and future transport protocols.

IANA is the authority for assigning service names and port numbers.
The registries that are created to store these assignments are
maintained by IANA. For protocols developed by IETF working groups,
IANA now also offers a method for the "early assignment" [RFC4020] of
service names and port numbers, as described in Section 8.1.

This document updates IANA’s procedures for UDP and TCP port numbers
by obsoleting Sections 8 and 9.1 of the IANA assignment guidelines
[RFC2780]. (Note that other sections of the IANA assignment

guidelines, relating to the protocol field values in IPv4 headers,

were also updated in February 2008 [RFC5237].) This document also
updates the IANA assignment procedures for DCCP [RFC4340]
[RFC5595]and SCTP [RFC4960].

The Lightweight User Datagram Protocol (UDP-Lite) shares the port

space with UDP. The UDP-Lite specification [RFC3828] says: "UDP-Lite
uses the same set of port number values assigned by the IANA for use

Cotton, et al. Expires August 16, 2011 [Page 4]

Internet-Draft Service Name and Port Number Procedures February 2011

by UDP". An update of the UDP procedures therefore also results in a
corresponding update of the UDP-Lite procedures.

This document also clarifies what a service name is and how it is
assigned. This will impact the DNS SRV specification [RFC2782],
because that specification merely makes a brief mention that the
symbolic names of services are defined in "Assigned Numbers"
[RFC1700], without stating to which section it refers within that
230-page document. The DNS SRV specification may have been referring
to the list of Port Assignments (known as /etc/services on Unix), or

to the "Protocol And Service Names" section, or to both, or to some
other section. Furthermore, "Assigned Numbers" [RFC1700] has been
obsoleted [RFC3232] and has been replaced by on-line registries
[PORTREG][PROTSERVREG].

The development of new transport protocols is a major effort that the
IETF does not undertake very often. If a new transport protocol is
standardized in the future, it is expected to follow these guidelines

and practices around using service hames and port numbers as much as
possible, for consistency.

2. Motivation

Information about the assignment procedures for the port registry has
existed in three locations: the forms for requesting port number

assignments on the IANA web site [SYSFORM][USRFORM], an introductory
text section in the file listing the port number assignments

themselves (known as the port numbers registry) [PORTREG], and two

brief sections of the IANA Allocation Guidelines [RFC2780].

Similarly, the procedures surrounding service names have been
historically unclear. Service names were originally created as
mnemonic identifiers for port numbers without a well-defined syntax,
apart from the 14-character limit mentioned on the IANA website
[SYSFORM][USRFORM]. Even that length limit has not been consistently
applied, and some assigned service names are 15 characters long.
When service identification via DNS SRV Resource Records (RRs) was
introduced [RFC2782], it became useful to start assigning service
names alone, and because IANA had no procedure for assigning a
service name without an associated port number, this lead to the
creation of an informal temporary service name registry outside of

the control of IANA, which now contains roughly 500 service names
[SRVREG].

This document aggregates all this scattered information into a single

reference that aligns and clearly defines the management procedures
for both service names and port numbers. It gives more detailed

Cotton, et al. Expires August 16, 2011 [Page 5]

Internet-Draft Service Name and Port Number Procedures February 2011

guidance to prospective requesters of service names and ports than
the existing documentation, and it streamlines the IANA procedures
for the management of the registry, so that requests can be completed
in a timely manner.

This document defines rules for assignment of service names without
associated port numbers, for such usages as DNS SRV records
[RFC2782], which was not possible under the previous IANA procedures.
The document also merges service name assignments from the non-IANA
ad hoc registry [SRVREG] and from the IANA "Protocol and Service
Names" registry [PROTSERVREG] into the IANA "Service Name and
Transport Protocol Port Number" registry [PORTREG], which from here
on is the single authoritative registry for service names and port

numbers.

An additional purpose of this document is to describe the principles
that guide the IETF and IANA in their role as the long-term joint
stewards of the service name and port number registry. TCP and UDP
have had remarkable success over the last decades. Thousands of
applications and application-level protocols have service names and
port numbers assigned for their use, and there is every reason to
believe that this trend will continue into the future. It is hence
extremely important that management of the registry follow principles
that ensure its long-term usefulness as a shared resource. Section 7
discusses these principles in detail.

3. Background

The Transmission Control Protocol (TCP) [RFC0793] and the User
Datagram Protocol (UDP) [RFCO0768] have enjoyed a remarkable success
over the decades as the two most widely used transport protocols on

the Internet. They have relied on the concept of "ports” as logical
entities for Internet communication. Ports serve two purposes:

first, they provide a demultiplexing identifier to differentiate

transport sessions between the same pair of endpoints, and second,
they may also identify the application protocol and associated

service to which processes connect. Newer transport protocols, such

as the Stream Control Transmission Protocol (SCTP) [RFC4960] and the
Datagram Congestion Control Protocol (DCCP) [RFC4342] have also
adopted the concept of ports for their communication sessions and use
16-bit port numbers in the same way as TCP and UDP (and UDP-Lite
[RFC3828], a variant of UDP).

Port numbers are the original and most widely used means for
application and service identification on the Internet. Ports are
16-bit numbers, and the combination of source and destination port
numbers together with the IP addresses of the communicating end

Cotton, et al. Expires August 16, 2011 [Page 6]

Internet-Draft Service Name and Port Number Procedures February 2011

systems uniquely identifies a session of a given transport protocol.

Port numbers are also known by their associated service names such as
"telnet" for port number 23 and "http" (as well as "www" and "www-
http") for port number 80.

Hosts running services, hosts accessing services on other hosts, and
intermediate devices (such as firewalls and NATS) that restrict

services need to agree on which service corresponds to a particular
destination port. Although this is ultimately a local decision with
meaning only between the endpoints of a connection, it is common for
many services to have a default port upon which those servers usually
listen, when possible, and these ports are recorded by the Internet
Assigned Numbers Authority (IANA) through the service name and port
number registry [PORTREG].

Over time, the assumption that a particular port number necessarily
implies a particular service may become less true. For example,
multiple instances of the same service on the same host cannot
generally listen on the same port, and multiple hosts behind the same
NAT gateway cannot all have a mapping for the same port on the
external side of the NAT gateway, whether using static port mappings
configured by hand by the user, or dynamic port mappings configured
automatically using a port mapping protocol like NAT Port Mapping
Protocol (NAT-PMP) [I-D.cheshire-nat-pmp] or Internet Gateway Device
(IGD) [IGD].

Applications may use port numbers directly, look up port numbers

based on service names via system calls such as getservbyname() on
UNIX, look up port numbers by performing queries for DNS SRV records
[RFC2782][I-D.cheshire-dnsext-dns-sd], or determine port numbers in a
variety of other ways like the TCP Port Service Multiplexer (TCPMUX)
[RFC1078].

Designers of applications and application-level protocols may apply
to IANA for an assigned service name and port number for a specific
application, and may - after assignment - assume that no other
application will use that service name or port number for its
communication sessions. Application designers also have the option
of requesting only an assigned service name without a corresponding
fixed port number if their application does not require one, such as
applications that use DNS SRV records to look up port numbers
dynamically at runtime. Because the port number space is finite (and
therefore conservation is an important goal) the alternative of using
service names instead of port numbers is RECOMMENDED whenever
possible.

Cotton, et al. Expires August 16, 2011 [Page 7]

Internet-Draft Service Name and Port Number Procedures February 2011

4. Conventions Used in this Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in

"Key words for use in RFCs to Indicate Requirement Levels" [RFC2119].

This document uses the term "assignment" to refer to the procedure by
which IANA provides service names and/or port numbers to requesting
parties; other RFCs refer to this as "allocation" or "registration”.

This document assumes that all these terms have the same meaning, and
will use terms other than "assignment" when quoting from or referring

to text in these other documents.

5. Service Names

Service hames are the unique key in the Service Name and Transport
Protocol Port Number Registry. This unique symbolic name for a
service may also be used for other purposes, such as in DNS SRV
records [RFC2782]. Within the registry, this unique key ensures that
different services can be unambiguously distinguished, thus
preventing name collisions and avoiding confusion about who is the
Assignee for a particular entry.

There may be more than one service name associated with a particular
transport protocol and port. There are three ways that such port
number overloading can occur:

o0 Overloading occurs when one service is an extension of another
service, and an in-band mechanism exists for determining if the
extension is present or not. One example is port 3478, which has
the service name aliases "stun" and "turn”. TURN [RFC5766] is an
extension to the STUN [RFC5389] service. TURN-enabled clients
wishing to locate TURN servers could attempt to discover "stun"
services and then check in-band if the server also supports TURN,
but this would be inefficient. Enabling them to directly query
for "turn" servers by name is a better approach. (Note that TURN
servers in this case should also be locatable via a "stun"
discovery, because every TURN server is also a STUN server.)

o By historical accident, the service name "http" has two synonyms
"www" and "www-http". When used in SRV records [RFC2782] and
similar service discovery mechanisms, only the service name "http"
should be used, not these additional names. If a server were to
advertise "www", it would not be discovered by clients browsing
for "http". Advertising or browsing for the aliases as well as
the primary service name is inefficient, and achieves nothing that

Cotton, et al. Expires August 16, 2011 [Page 8]

Internet-Draft Service Name and Port Number Procedures February 2011

is not already achieved by using the service name "http"
exclusively.

0 As indicated in this document in Section 10.1, overloading has
been used to create replacement names that are consistent with the
syntax this document prescribes for legacy names that do not
conform to this syntax already. For such cases, only the new name
should be used in SRV records, to avoid the same issues as with
historical cases of multiple names, and also because the legacy
names are incompatible with SRV record use.

Assignment requests for new names for existing registered services
will be rejected, as a result. Implementers are requested to inform
IANA if they discover other cases where a single service has multiple
names, so that one name may be recorded as the primary name for
service discovery purposes.

Service hames are assigned on a "first come, first served" basis, as
described in Section 8.1. Names should be brief and informative,
avoiding words or abbreviations that are redundant in the context of
the registry (e.g., "port", "service", "protocol”, etc.) Names

referring to discovery services, e.g., using multicast or broadcast

to identify endpoints capable of a given service, SHOULD use an

easily identifiable suffix (e.g., "-disc").
5.1. Service Name Syntax

Valid service names are hereby normatively defined as follows:

0 MUST be at least 1 character and no more than 15 characters long

0 MUST contain only US-ASCII [ANSI.X3-4.1986] letters 'A’ - 'Z’ and
'a’ - 'z, digits '0’ - '9’, and hyphens (-, ASCII 0x2D or
decimal 45)

0 MUST contain at least one letter (A’ -'Z' or’a’ - '2")

0 MUST NOT begin or end with a hyphen

o hyphens MUST NOT be adjacent to other hyphens

The reason for requiring at least one letter is to avoid service

names like "23" (could be confused with a humeric port) or "6000-

6063" (could be confused with a numeric port range). Although

service names may contain both upper-case and lower-case letters,

case is ignored for comparison purposes, so both "http" and "HTTP"
denote the same service.

Cotton, et al. Expires August 16, 2011 [Page 9]

Internet-Draft Service Name and Port Number Procedures February 2011

Service names are purely opaque identifiers, and no semantics are
implied by any superficial structure that a given service name may
appear to have. For example, a company called "Example” may choose
to register service names "Example-Foo" and "Example-Bar" for its
"Foo" and "Bar" products, but the "Example" company cannot claim to
"own" all service names beginning with "Example-"; they cannot
prevent someone else from registering "Example-Baz" for a different
service, and they cannot prevent other developers from using the
"Example-Foo" and "Example-Bar" service types in order to
interoperate with the "Foo" and "Bar" products. Technically

speaking, in service discovery protocols, service names are merely a
series of byte values on the wire; for the mnemonic convenience of
human developers it can be convenient to interpret those byte values
as human-readable ASCII characters, but software should treat them as
purely opaque identifiers and not attempt to parse them for any
additional embedded meaning.

In approximately 98% of cases, the new "service name" is exactly the
same as the old historic "short name" from the IANA web forms
[SYSFORM] [USRFORM]. In approximately 2% of cases, the new "service
name" is derived from the old historic "short name" as described

below in Section 10.1.

The rules for valid service names, excepting the limit of 15
characters maximum, are also expressed below (as a non-normative
convenience) using ABNF [RFC5234].

SRVNAME = *(1*DIGIT [HYPHEN]) ALPHA *([HYPHEN] ALNUM)
ALNUM =ALPHA/DIGIT :A-Z a-z, 0-9

HYPHEN = 9%x2D

ALPHA = %x41-5A / %x61-7A ; A-Z | a-z [RFC5234]

DIGIT = %x30-39 :0-9 [RFC5234]

5.2. Service Name Usage in DNS SRV Records

The DNS SRV specification [RFC2782] states that the Service Label
part of the owner name of a DNS SRV record includes a "Service"
element, described as "the symbolic name of the desired service", but
as discussed above, it is not clear precisely what this means.

This document clarifies that the Service Label MUST be a service name
as defined herein with an underscore prepended. The service name
SHOULD be registered with IANA and recorded in the Service Name and
Transport Protocol Port Number Registry [PORTREG].

The details of using Service Names in SRV Service Labels are

Cotton, et al. Expires August 16, 2011 [Page 10]

Internet-Draft Service Name and Port Number Procedures February 2011

specified in the DNS SRV specification [RFC2782].

6. Port Number Ranges

TCP, UDP, UDP-Lite, SCTP and DCCP use 16-bit namespaces for their
port number registries. The port registries for all of these

transport protocols are subdivided into three ranges of numbers
[RFC1340], and Section 8.1.2 describes the IANA procedures for each
range in detail:

o the System Ports, also known as the Well Known Ports, from 0-1023
(assigned by IANA)

o the User Ports, also known as the Registered Ports, from 1024-
49151 (assigned by IANA)

o the Dynamic Ports, also known as the Private or Ephemeral Ports,
from 49152-65535 (never assigned)

Of the assignable port ranges (System Ports and User Ports, i.e.,
port numbers 0-49151), individual port numbers are in one of three
states at any given time:

0 Assigned: Assigned port numbers are currently assigned to the
service indicated in the registry.

0 Unassigned: Unassigned port numbers are currently available for
assignment upon request, as per the procedures outlined in this
document.

0 Reserved: Reserved port numbers are not available for regular
assignment; they are "assigned to IANA" for special purposes.
Reserved port numbers include values at the edges of each range,
e.g., 0, 1023, 1024, etc., which may be used to extend these
ranges or the overall port number space in the future.

In order to keep the size of the registry manageable, IANA typically

only records the Assigned and Reserved service names and port numbers
in the registry. Unassigned values are typically not explicitly

listed. (There are very many Unassigned service names and

enumerating them all would not be practical.)

As a data point, when this document was written, approximately 76% of
the TCP and UDP System Ports were assigned, and approximately 9% of
the User Ports were assigned. (As noted, Dynamic Ports are never
assigned.)

Cotton, et al. Expires August 16, 2011 [Page 11]

Internet-Draft Service Name and Port Number Procedures February 2011

6.1. Service names and Port Numbers for Experimentation

Of the System Ports, two TCP and UDP port numbers (1021 and 1022),
together with their respective service names ("expl" and "exp2"),

have been assigned for experimentation with new applications and
application-layer protocols that require a port number in the

assigned ports range [RFC4727].

Please refer to Sections 1 and 1.1 of "Assigning Experimental and
Testing Numbers Considered Useful" [RFC3692] for how these
experimental port numbers are to be used.

This document assigns the same two service names and port numbers for
experimentation with new application-layer protocols over SCTP and
DCCP in Section 10.2.

Unfortunately, it can be difficult to limit access to these ports.

Users SHOULD take measures to ensure that experimental ports are
connecting to the intended process. For example, users of these
experimental ports might include a 64-bit nonce, once on each segment
of a message-oriented channel (e.g., UDP), or once at the beginning

of a byte-stream (e.g., TCP), which is used to confirm that the port

is being used as intended. Such confirmation of intended use is
especially important when these ports are associated with privileged
(e.g., system or administrator) processes.

7. Principles for Service Name and Transport Protocol Port Number
Registry Management

Management procedures for the service name and transport protocol
port number registry include assignment of service names and port
numbers upon request, as well as management of information about
existing assignments. The latter includes maintaining contact and
description information about assignments, revoking abandoned
assignments, and redefining assignments when needed. Of these
procedures, careful port number assignment is most critical, in order
to continue to conserve the remaining port numbers.

As noted earlier, only about 9% of the User Port space is currently
assigned. The current rate of assignment is approximately 400 ports
per year, and has remained steady for the past 8 years. At that

rate, if similar conservation continues, this resource will sustain
another 85 years of assignment - without the need to resort to
reassignment of released values or revocation. The namespace
available for service names is much larger, which allows for simpler
management procedures.

Cotton, et al. Expires August 16, 2011 [Page 12]

Internet-Draft Service Name and Port Number Procedures February 2011

7.1. Past Principles

The principles for service name and port number management are based
on the recommendations of the IANA "Expert Review" team. Until
recently, that team followed a set of informal guidelines developed

based on the review experience from previous assignment requests.
These original guidelines, although informal, had never been publicly
documented. They are recorded here for historical purposes only; the
current guidelines are described in Section 7.2. These guidelines
previously were:

o TCP and UDP ports were simultaneously assigned when either was
requested

o Port numbers were the primary assignment; service names were
informative only, and did not have a well-defined syntax

o Port numbers were conserved informally, and sometimes
inconsistently (e.g., some services were assigned ranges of many
port numbers even where not strictly necessary)

0 SCTP and DCCP service name and port number registries were managed

separately from the TCP/UDP registries

0 Service names could not be assigned in the old ports registry
without assigning an associated port number at the same time

7.2. Updated Principles

This section summarizes the current principles by which IANA both
handles the Service Name and Transport Protocol Port Number Registry
and attempts to conserve the port number space. This description is
intended to inform applicants requesting service names and port
numbers. IANA has flexibility beyond these principles when handling
assignment requests; other factors may come into play, and exceptions
may be made to best serve the needs of the Internet. Applicants
should be aware that IANA decisions are not required to be bound to
these principles. These principles and general advice to users on

port use are expected to change over time and are therefore
documented separately, please see [I-D.touch-tsvwg-port-use].

IANA strives to assign service names that do not request an

associated port number assignment under a simple "First Come, First
Served" policy [RFC5226]. IANA MAY, at its discretion, refer service
name requests to "Expert Review" in cases of mass assignment requests
or other situations where IANA believes expert review is advisable
[RFC5226]; use of the "Expert Review" helps advise IANA informally in
cases where "IETF Review" or "IESG Review" is used, as with most IETF

Cotton, et al. Expires August 16, 2011 [Page 13]

Internet-Draft Service Name and Port Number Procedures February 2011

protocols.

The basic principle of service name and port number registry
management is to conserve use of the port space where possible.
Extensions to support larger port number spaces would require
changing many core protocols of the current Internet in a way that
would not be backward compatible and interfere with both current and
legacy applications.

Conservation of the port number space is required because this space
is a limited resource, so applications are expected to participate in

the traffic demultiplexing process where feasible. The port numbers
are expected to encode as little information as possible that will

still enable an application to perform further demultiplexing by

itself. In particular, the principles form a goal that IANA strives

to achieve for new applications (with exceptions as deemed
appropriate, especially as for extensions to legacy services) as
follows:

0 IANA strives to assign only one assigned port number per service
or application

0 IANA strives to assign only one assigned port number for all
variants of a service (e.g., for updated versions of a service)

0 IANA strives to encourage the deployment of secure protocols

0 IANA strives to assign only one assigned port number for all
different types of device using or participating in the same
service

0 IANA strives to assign port numbers only for the transport
protocol(s) explicitly named in an assignment request

o IANA may recover unused port numbers, via the new procedures of
de-assignment, revocation, and transfer

Where possible, a given service is expected to demultiplex messages
if necessary. For example, applications and protocols are expected
to include in-band version information, so that future versions of

the application or protocol can share the same assigned port.
Applications and protocols are also expected to be able to

efficiently use a single assigned port for multiple sessions, either

by demultiplexing multiple streams within one port, or using the
assigned port to coordinate using dynamic ports for subsequent
exchanges (e.qg., in the spirit of FTP [RFC0959].

These principles of port conservation are explained further in

Cotton, et al. Expires August 16, 2011 [Page 14]

Internet-Draft Service Name and Port Number Procedures February 2011

[I-D.touch-tsvwg-port-use]. That document explains in further detail
how ports are used in various ways, notably:

0 as endpoint process identifiers
0 as application protocol identifiers
o for firewall filtering purposes

Both the process identifier and the protocol identifier uses suggest
that anything a single process can demultiplex, or that can be
encoded into a single protocol, should be. The firewall filtering

use suggests that some uses that could be multiplexed or encoded
could instead be separated to allow for easier firewall management.
Note that this latter use is much less sound, because port numbers
have meaning only for the two endpoints involved in a connection, and
drawing conclusions about the service that generated a given flow
based on observed port numbers is not always reliable.

IANA will begin assigning port numbers for only those transport
protocols explicitly included in an assignment request. This ends

the long-standing practice of automatically assigning a port number

to an application for both TCP and UDP, even if the request is for

only one of these transport protocols. The new assignment procedure
conserves resources by assigning a port number to an application for
only those transport protocols (TCP, UDP, SCTP and/or DCCP) it
actually uses. The port number will be marked as Reserved - instead
of Assigned - in the port number registries of the other transport
protocols. When applications start supporting the use of some of

those additional transport protocols, the Assignee for the assignment
MUST request IANA convert these reserved ports into assignments. An
application MUST NOT assume that it can use a port number assigned to
it for use with one transport protocol with another transport

protocol without IANA converting the reservation into an assignment.

When the available pool of unassigned numbers has run out in a port
range, it will be necessary for IANA to consider the Reserved ports
for assignment. This is part of the motivation for not automatically
assigning ports for transport protocols other than the requested
one(s). This will allow more ports to be available for assignment at
that point. To help conserve ports, application developers SHOULD
request assignment of only those transport protocols that their
application currently uses.

Conservation of port numbers is improved by procedures that allow
previously allocated port numbers to become Unassigned, either
through de-assignment or through revocation, and by a procedure that
lets application designers transfer an assigned but unused port

Cotton, et al. Expires August 16, 2011 [Page 15]

Internet-Draft Service Name and Port Number Procedures February 2011

number to a new application. Section 8 describes these procedures,
which until now were undocumented. Port number conservation is also
improved by recommending that applications that do not require an
assigned port should register only a service name without an
associated port number.

8. IANA Procedures for Managing the Service Name and Transport Protocol
Port Number Registry

This section describes the process for handling requests associated
with IANA’s management of the Service Name and Transport Protocol
Port Number Registry. Such requests include initial assignment, de-
assignment, reuse, changes to the service name, and updates to the
contact information or description associated with an assignment.
Revocation is as additional process, initiated by IANA.

8.1. Service Name and Port Number Assignment

Assignment refers to the process of providing service names or port
numbers to applicants. All such assignments are made from service
names or port numbers that are Unassigned or Reserved at the time of
the assignment.

0 Unassigned names and numbers are allocated according to the rules
described in Section 8.1.2 below.

0 Reserved numbers and names are generally only assigned by a
Standards Action or an IESG Approval, and MUST be accompanied by a
statement explaining the reason a Reserved number or name is
appropriate for this action. The only exception to this rule is
that the current Assignee of a port number MAY request the
assignment of the corresponding Reserved port number for other
transport protocols when needed. IANA will initiate an "Expert
Review" [RFC5226] for such requests.

When an assignment for one or more transport protocols is approved,

the port number for any non-requested transport protocol(s) will be
marked as Reserved. IANA SHOULD NOT assign that port number to any
other application or service until no other port numbers remain
Unassigned in the requested range.

8.1.1. General Assignment Procedure

Cotton, et al. Expires August 16, 2011 [Page 16]

Internet-Draft Service Name and Port Number Procedures February 2011

A service name or port number assignment request contains the
following information. The service name is the unique identifier of
a given service:

Service Name (REQUIRED)

Transport Protocol(s) (REQUIRED)
Assignee (REQUIRED)

Contact (REQUIRED)

Description (REQUIRED)

Reference (REQUIRED)

Port Number (OPTIONAL)

Service Code (REQUIRED for DCCP only)
Known Unauthorized Uses (OPTIONAL)
Assignment Notes (OPTIONAL)

0 Service Name: A desired unique service name for the service
associated with the assignment request MUST be provided. This
name may be used with various service selection and discovery
mechanisms (including, but not limited to, DNS SRV records
[RFC2782]). The name MUST be compliant with the syntax defined in
Section 5.1. In order to be unique, they MUST NOT be identical to
any currently assigned service name in the IANA registry
[PORTREG]. Service names are case-insensitive; they may be
provided and entered into the registry with mixed case for
clarity, but for the comparison purposes the case is ignored.

o Transport Protocol(s): The transport protocol(s) for which an
assignment is requested MUST be provided. This field is currently
limited to one or more of TCP, UDP, SCTP, and DCCP. Requests
without any port assignment and only a service hame are still
required to indicate which protocol the service uses.

0 Assignee: Name and email address of the party to whom the
assignment is made. This is REQUIRED. The Assignee is the
organization, company or individual person responsible for the
initial assignment. For assignments done through RFCs published
via the "IETF Document Stream" [RFC4844], the Assignee will be the
IESG <iesg@ietf.org>.

o Contact: Name and email address of the Contact person for the
assignment. This is REQUIRED. The Contact person is the
responsible person for the Internet community to send questions
to. This person is also authorized to submit changes on behalf of
the Assignee; in cases of conflict between the Assignee and the
Contact, the Assignee decisions take precedence. Additional
address information MAY be provided. For assignments done through
RFCs published via the "IETF Document Stream" [RFC4844], the
Contact will be the IETF Chair <chair@ietf.org>.

Cotton, et al. Expires August 16, 2011 [Page 17]

Internet-Draft Service Name and Port Number Procedures February 2011

o Description: A short description of the service associated with
the assignment request is REQUIRED. It should avoid all but the
most well-known acronyms.

o Reference: A description of (or a reference to a document
describing) the protocol or application using this port. The
description must state whether the protocol uses IP-layer
broadcast, multicast, or anycast communication.

For assignments requesting only a Service Name, or a Service Name
and User Port, a statement that the protocol is proprietary and

not publicly documented is also acceptable, provided that the
required information regarding the use of IP broadcast, multicast,

or anycast is given.

For any assignment request that includes a User Port, the
assignment request MUST explain why a port number in the Dynamic
Ports range is unsuitable for the given application.

For any assignment request that includes a System Port, the
assignment request MUST explain why a port number in the User
Ports or Dynamic Ports ranges is unsuitable, and a reference to a
stable protocol specification document MUST be provided.

IANA MAY accept early assignment [RFC4020] requests (known as
"early allocation" therein) from IETF Working Groups that

reference a sufficiently stable Internet Draft instead of a

published Standards-Track RFC.

o Port Number: If assignment of a port number is desired, either the
port number the requester suggests for assignment or indication of
port range (user or system) MUST be provided. If only a service
name is to be assigned, this field is left empty. If a specific
port number is requested, IANA is encouraged to assign the
requested number. If a range is specified, IANA will choose a
suitable number from the User or System Ports ranges. Note that
the applicant MUST NOT use the requested port prior to the
completion of the assignment.

0 Service Code: If the assignment request includes DCCP as a
transport protocol then the request MUST include a desired unique
DCCP service code [RFC5595], and MUST NOT include a requested DCCP
service code otherwise. Section 19.8 of the DCCP specification
[RFC4340] defines requirements and rules for assignment, updated
by this document. Note that, as per [RFC5595], some service codes
are not assigned; zero (absence of a meaningful service code) or
4294967295 (invalid service code) are permanently reserved, and
the Private service codes 1056964608-1073741823 (i.e., 32-bit

Cotton, et al. Expires August 16, 2011 [Page 18]

Internet-Draft Service Name and Port Number Procedures February 2011

values with the high-order byte equal to a value of 63,
corresponding to the ASCII character '?’) are not centrally
assigned.

o Known Unauthorized Uses: A list of uses by applications or
organizations who are not the Assignee. This list may be
augmented by IANA after assignment when unauthorized uses are
reported.

0 Assignment Notes: Indications of owner/name change, or any other
assignment process issue. This list may be updated by IANA after
assignment to help track changes to an assignment, e.g., de-
assignment, owner/name changes, etc.

If the assignment request is for the addition of a new transport
protocol to an already-assigned service name and the requester is not
the Assignee or Contact for the already-assigned service hame, IANA
needs to confirm with the Assignee for the existing assignment
whether this addition is appropriate.

If the assignment request is for a new service name sharing the same
port as an already-assigned service name (see port number overloading
in Section 5), IANA needs to confirm with the Assignee for the

existing service name and other appropriate experts whether the
overloading is appropriate.

When IANA receives an assignment request - containing the above
information - that is requesting a port number, IANA SHALL initiate

an "Expert Review" [RFC5226] in order to determine whether an
assignment should be made. For requests that are not seeking a port
number, IANA SHOULD assign the service name under a simple "First
Come First Served" policy [RFC5226].

8.1.2. Variances for Specific Port Number Ranges

Section 6 describes the different port number ranges. Itis

important to note that IANA applies slightly different procedures

when managing the different port ranges of the service name and port
number registry:

o Ports in the Dynamic Ports range (49152-65535) have been
specifically set aside for local and dynamic use and cannot be
assigned through IANA. Application software may simply use any
dynamic port that is available on the local host, without any sort
of assignment. On the other hand, application software MUST NOT
assume that a specific port number in the Dynamic Ports range will
always be available for communication at all times, and a port
number in that range hence MUST NOT be used as a service

Cotton, et al. Expires August 16, 2011 [Page 19]

Internet-Draft Service Name and Port Number Procedures February 2011

identifier.

o Ports in the User Ports range (1024-49151) are available for
assignment through IANA, and MAY be used as service identifiers
upon successful assignment. Because assigning a port number for a
specific application consumes a fraction of the shared resource
that is the port number registry, IANA will require the requester
to document the intended use of the port number. For most IETF
protocols, ports in the User Ports range will be assigned under
the "IETF Review" or "IESG Approval" procedures [RFC5226] and no
further documentation is required. Where these procedures do not
apply, then the requester must input the documentation to the
"Expert Review" procedure [RFC5226], by which IANA will have a
technical expert review the request to determine whether to grant
the assignment. Regardless of the path ("IETF Review", "IESG
Approval”, or "Expert Review"), the submitted documentation is
expected to be the same, as described in this section, and MUST
explain why using a port number in the Dynamic Ports range is
unsuitable for the given application. Further, IANA MAY utilize
the Expert Review process informally to inform their position in
participating in "IETF Review" and "IESG Review"

o Ports in the System Ports range (0-1023) are also available for
assignment through IANA. Because the System Ports range is both
the smallest and the most densely allocated, the requirements for
new assignments are more strict than those for the User Ports
range, and will only be granted under the "IETF Review" or "IESG
Approval" procedures [RFC5226]. A request for a System Port
number MUST document *both* why using a port number from the
Dynamic Ports range is unsuitable *and* why using a port number
from the User Ports range is unsuitable for that application.

8.2. Service Name and Port Number De-Assignment

The Assignee of a granted port number assignment can return the port
number to IANA at any time if they no longer have a need for it. The
port number will be de-assigned and will be marked as Reserved. I1ANA
should not re-assign port numbers that have been de-assigned until

all unassigned port numbers in the specific range have been assigned.

Before proceeding with a port number de-assignment, IANA needs to
reasonably establish that the value is actually no longer in use.

Because there is much less danger of exhausting the service name
space compared to the port number space, it is RECOMMENDED that a
given service name remain assigned even after all associated port
number assignments have become de-assigned. Under this policy, it
will appear in the registry as if it had been created through a

Cotton, et al. Expires August 16, 2011 [Page 20]

Internet-Draft Service Name and Port Number Procedures February 2011

service name assignment request that did not include any port
numbers.

On rare occasions, it may still be useful to de-assign a service
name. In such cases, IANA will mark the service name as Reserved.
IANA will involve their IESG-appointed expert in such cases.

IANA will include a comment in the registry when de-assignment
happens to indicate its historic usage.

8.3. Service Name and Port Number Reuse

If the Assignee of a granted port number assignment no longer has a
need for the assigned number, but would like to reuse it for a
different application, they can submit a request to IANA to do so.

Logically, port number reuse is to be thought of as a de-assignment
(Section 8.2) followed by an immediate (re-)assignment (Section 8.1)
of the same port number for a new application. Consequently, the
information that needs to be provided about the proposed new use of
the port number is identical to what would need to be provided for a
new port number assignment for the specific ports range.

Because there is much less danger of exhausting the service name

space compared to the port number space, it is RECOMMENDED that the
original service name associated with the prior use of the port

number remains assigned, and a new service name be created and
associated with the port number. This is again consistent with

viewing a reuse request as a de-assignment followed by an immediate
(re-)assignment. Re-using an assigned service name for a different
application is NOT RECOMMENDED.

IANA needs to carefully review such requests before approving them.
In some instances, the Expert Reviewer will determine that the
application the port number was assigned to has found usage beyond
the original Assignee, or that there is a concern that it may have

such users. This determination MUST be made quickly. A community
call concerning revocation of a port number (see below) MAY be
considered, if a broader use of the port number is suspected.

8.4. Service Name and Port Number Revocation
A port number revocation can be thought of as an IANA-initiated de-
assignment (Section 8.2), and has exactly the same effect on the

registry.

Sometimes, it will be clear that a specific port number is no longer
in use and that IANA can revoke it and mark it as Reserved. At other

Cotton, et al. Expires August 16, 2011 [Page 21]

Internet-Draft Service Name and Port Number Procedures February 2011

times, it may be unclear whether a given assigned port number is

still in use somewhere in the Internet. In those cases, IANA must
carefully consider the consequences of revoking the port number, and
SHOULD only do so if there is an overwhelming need.

With the help of their IESG-appointed Expert Reviewer, IANA SHALL
formulate a request to the IESG to issue a four-week community call
concerning the pending port number revocation. The IESG and IANA,
with the Expert Reviewer’s support, SHALL determine promptly after
the end of the community call whether revocation should proceed and
then communicate their decision to the community. This procedure
typically involves similar steps to de-assignment except that it is
initiated by IANA.

Because there is much less danger of exhausting the service name
space compared to the port number space, revoking service names is
NOT RECOMMENDED.

8.5. Service Name and Port Number Transfers

The value of service names and port numbers is defined by their
careful management as a shared Internet resource, whereas enabling
transfer allows the potential for associated monetary exchanges. As
a result, the IETF does not permit service name or port number
assignments to be transferred between parties, even when they are
mutually consenting.

The appropriate alternate procedure is a coordinated de-assignment
and assignment: The new party requests the service hame or port
number via an assignment and the previous party releases its
assignment via the de-assignment procedure outlined above.

With the help of their IESG-appointed Expert Reviewer, IANA SHALL
carefully determine if there is a valid technical, operational or
managerial reason to grant the requested new assignment.

8.6. Maintenance Issues

In addition to the formal procedures described above, updates to the
Description and Contact information are coordinated by IANA in an
informal manner, and may be initiated by either the Assignee or by
IANA, e.g., by the latter requesting an update to current Contact
information. (Note that the Assignee cannot be changed as a separate
procedure; see instead Section 8.5 above.)

Cotton, et al. Expires August 16, 2011 [Page 22]

Internet-Draft Service Name and Port Number Procedures February 2011

8.7. Disagreements

In the case of disagreements around any request there is the
possibility of appeal following the normal appeals process for IANA
assignments as defined by Section 7 of "Guidelines for Writing an
IANA Considerations Section in RFCs" [RFC5226].

9. Security Considerations

The IANA guidelines described in this document do not change the
security properties of UDP, TCP, SCTP, or DCCP.

Assignment of a service name or port number does not in any way imply
an endorsement of an application or product, and the fact that

network traffic is flowing to or from an assigned port number does

not mean that it is "good" traffic, or even that it is used by the

assigned service. Firewall and system administrators should choose
how to configure their systems based on their knowledge of the

traffic in question, not based on whether or not there is an assigned
service name or port number.

Services are expected to include support for security, either as
default or dynamically negotiated in-band. The use of separate
service name or port number assignments for secure and insecure
variants of the same service is to be avoided in order to discourage
the deployment of insecure services.

10. IANA Considerations

This document obsoletes Sections 8 and 9.1 of the March 2000 IANA
Allocation Guidelines [RFC2780].

Upon approval of this document, IANA is requested to contact Stuart
Cheshire, maintainer of the independent service name registry
[SRVREG], in order to merge the contents of that private registry
into the official IANA registry. It is expected that the independent
registry web page will be updated with pointers to the IANA registry
and to this RFC.

IANA is instructed to create a new service name entry in the service
name and port number registry [PORTREG] for any entry in the
"Protocol and Service Names" registry [PROTSERVREG] that does not
already have one assigned.

IANA is also instructed to indicate in the Assignment Notes for "www"
and "www-http" that they are duplicate terms that refer to the "http"

Cotton, et al. Expires August 16, 2011 [Page 23]

Internet-Draft Service Name and Port Number Procedures February 2011

service, and should not be used for discovery purposes. For this
conceptual service (human-readable web pages served over HTTP) the
correct service name to use for service discovery purposes is "http"
(see Section 5).

10.1. Service Name Consistency

Section 8.1 defines which character strings are well-formed service
names, which until now had not been clearly defined. The definition
in Section 8.1 was chosen to allow maximum compatibility of service
names with current and future service discovery mechanisms.

As of August 5, 2009 approximately 98% of the so-called "Short Names"
from existing port number assignments [PORTREG] meet the rules for
legal service names stated in Section 8.1, and hence for these

services their service name will be exactly the same as their "Short
Name".

The remaining approximately 2% of the exiting "Short Names" are not
suitable to be used directly as well-formed service names because
they contain illegal characters such as asterisks, dots, pluses,
slashes, or underscores. All existing "Short Names" conform to the
length requirement of 15 characters or fewer. For these unsuitable
"Short Names", listed in the table below, the service name will be

the Short Name with any illegal characters replaced by hyphens. 1ANA
SHALL add an entry to the registry giving the new well-formed primary
service name for the existing service, that otherwise duplicates the
original assignment information. In the description field of this

new entry giving the primary service name, IANA SHALL record that it
assigns a well-formed service name for the previous service and
reference the original assignment. In the Assignment Notes field of
the original assignment, IANA SHALL add a note that this entry is an
alias to the new well-formed service name, and that the old service
name is historic, not usable for use with many common service
discovery mechanisms.

Cotton, et al. Expires August 16, 2011 [Page 24]

Internet-Draft Service Name and Port Number Procedures February 2011

Names containing illegal characters to be replaced by hyphens:

| 914c/g | acmaint_dbd | acmaint_transd |

| atex_elmd |avanti_cdp | badm_priv |

| badm_pub | bdir_priv | bdir_pub |

| bmc_ctd_Idap | bmc_patroldb | boks_cintd |

| boks_servc | boks_servm | broker_service |
| bues_service |canit_store |cedros_fds |

| cl/1 | contamac_icm | corel_vncadmin |

| csc_proxy | cvc_hostd | dbcontrol_agent |

| dec_dim | dl_agent | documentum_s |

dsmeter_iatc	dsx_monitor	elpro_tunnel
elvin_client	elvin_server	encrypted_admin
erunbook_agent	erunbook_server	esri_sde
EtherNet/IP-1	EtherNet/IP-2	event_listener

flr_agent	gds_db	ibm_wrless_lan
iceedcp_rx	iceedcp tx	iclcnet_svinfo
idig_mux	ife_icorp	instl_bootc
instl_boots	intel_rci	interhdl_elmd

lan900_remote	LiebDevMgmt_A	LiebDevMgmt_C
LiebDevMgmt_DM	mapper-ws_ethd	matrix_vnet
mdbs_daemon	menandmice_noh	msl_Imd

| nburn_id | ner_ccl | nds_sso |

| netmap_Im | nms_topo_serv | notify_srvr |
| novell-lu6.2 | nuts_bootp | nuts_dem |

| ocs_amu | ocs_cmu | pipe_server |

| pra_elmd | printer_agent | redstorm_diag |

redstorm_find	redstorm_info	redstorm_join
resource_mgr	rmonitor_secure	rsvp_tunnel
sai_sentim	sge_execd	sge_gmaster

| shiva_confsrvr | sgl*net | srve_registry |

| stm_pproc | subntbcst_tftp | udt_os |

| universe_suite | veritas_pbx | vision_elmd |

| vision_server | wrs_registry | z39.50 |

+ + + +

Following the example set by the "application/whoispp-query" MIME
Content-Type [RFC2957], the service name for "whois++" will be
"whoispp".

10.2. Port Numbers for SCTP and DCCP Experimentation

Two System UDP and TCP ports, 1021 and 1022, have been reserved for
experimental use [RFC4727]. This document assigns the same port
numbers for SCTP and DCCP, updates the TCP and UDP assignments, and
also instructs IANA to automatically assign these two port numbers

for any future transport protocol with a similar 16-bit port number

Cotton, et al. Expires August 16, 2011 [Page 25]

Internet-Draft Service Name and Port Number Procedures February 2011

namespace.

Note that these port numbers are meant for temporary experimentation
and development in controlled environments. Before using these port
numbers, carefully consider the advice in Section 6.1 in this

document, as well as in Sections 1 and 1.1 of "Assigning Experimental
and Testing Numbers Considered Useful" [RFC3692]. Most importantly,
application developers must request a permanent port number
assignment from IANA as described in Section 8.1 before any kind of
non-experimental deployment.

+ + +

| Service Name | expl [

| Transport Protocol | DCCP, SCTP, TCP, UDP |
| Assignee | IESG <iesg@ietf.org> |

| Contact | IETF Chair <chair@ietf.org> |

| Description | RFC3692-style Experiment 1 |

| Reference | [RFC4727] [RFCyyyy] |

| Port Number | 1021 |

+ + +

| Service Name | exp2 |

| Transport Protocol | DCCP, SCTP, TCP, UDP |
| Assignee | IESG <iesg@ietf.org> |

| Contact | IETF Chair <chair@ietf.org> |

| Description | RFC3692-style Experiment 2 |

| Reference | [RFC4727] [RFCyyyy] |

| Port Number | 1022 |

+ + +

[RFC Editor Note: Please change "yyyy" to the RFC number allocated to
this document before publication.]

10.3. Updates to DCCP Registries

This document updates the IANA assignment procedures for the DCCP
Port Number and DCCP Service Codes Registries [RFC4340].

10.3.1. DCCP Service Code Registry
Service Codes are assigned first-come-first-served according to
Section 19.8 of the DCCP specification [RFC4340]. This document

updates that section by extending the guidelines given there in the
following ways:

Cotton, et al. Expires August 16, 2011 [Page 26]

Internet-Draft Service Name and Port Number Procedures February 2011

o IANA MAY assign new Service Codes without seeking Expert Review
using their discretion, but SHOULD seek expert review if a request
asks for more than five Service Codes.

o0 IANA should feel free to contact the DCCP Expert Reviewer with any
guestions related to requests for DCCP-related codepoints.

10.3.2. DCCP Port Numbers Registry

The DCCP ports registry is defined by Section 19.9 of the DCCP
specification [RFC4340]. Assignments in this registry require prior
assignment of a Service Code. Not all Service Codes require IANA-
assigned ports. This document updates that section by extending the
guidelines given there in the following way:

0 IANA should normally assign a value in the range 1024-49151 to a
DCCP server port. IANA requests to assign port numbers in the
System Ports range (0 through 1023), require an "IETF Review"
[RFC5226] prior to assignment by IANA [RFC4340].

o IANA MUST NOT assign more than one DCCP server port to a single
service code value.

0 The assignment of multiple service codes to the same DCCP port is
allowed, but subject to expert review.

0 The set of Service Code values associated with a DCCP server port
should be recorded in the service name and port number registry.

0 A request for additional Service Codes to be associated with an
already-allocated Port Number requires Expert Review. These
requests will normally be accepted when they originate from the
contact associated with the port assignment. In other cases,
these applications will be expected to use an unallocated port,
when this is available.

The DCCP specification [RFC4340] notes that a short port name MUST be
associated with each DCCP server port that has been assigned. This

document clarifies that this short port name is the Service Name as
defined here, and this name MUST be unique.

11. Contributors

Alfred Hoenes (ah@tr-sys.de) and Allison Mankin (mankin@psg.com) have
contributed text and ideas to this document.

Cotton, et al. Expires August 16, 2011 [Page 27]

Internet-Draft Service Name and Port Number Procedures February 2011

12. Acknowledgments

The text in Section 10.3 is based on a suggestion originally proposed
as a part of the DCCP Service Codes document [RFC5595] by Gorry
Fairhurst.

Lars Eggert is partly funded by the Trilogy Project [TRILOGY], a
research project supported by the European Commission under its
Seventh Framework Program.

13. References
13.1. Normative References

[ANSI.X3-4.1986]
American National Standards Institute, "Coded Character
Set - 7-bit American Standard Code for Information
Interchange", ANSI X3.4, 1986.

[RFCO0768] Postel, J., "User Datagram Protocol”, STD 6, RFC 768,
August 1980.

[RFCO0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2780] Bradner, S. and V. Paxson, "IANA Allocation Guidelines For
Values In the Internet Protocol and Related Headers",
BCP 37, RFC 2780, March 2000.

[RFC2782] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
specifying the location of services (DNS SRV)", RFC 2782,
February 2000.

[RFC3828] Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E., and
G. Fairhurst, "The Lightweight User Datagram Protocol
(UDP-Lite)", RFC 3828, July 2004.

[RFC4020] Kompella, K. and A. Zinin, "Early IANA Allocation of
Standards Track Code Points", BCP 100, RFC 4020,
February 2005.

[RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
Congestion Control Protocol (DCCP)", RFC 4340, March 2006.

Cotton, et al. Expires August 16, 2011 [Page 28]

Internet-Draft Service Name and Port Number Procedures February 2011

[RFC4727] Fenner, B., "Experimental Values In IPv4, IPv6, ICMPV4,
ICMPv6, UDP, and TCP Headers", RFC 4727, November 2006.

[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 5226,
May 2008.

[RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
Specifications: ABNF", STD 68, RFC 5234, January 2008.

[RFC5595] Fairhurst, G., "The Datagram Congestion Control Protocol
(DCCP) Service Codes", RFC 5595, September 2009.

13.2. Informative References

[I-D.cheshire-dnsext-dns-sd]
Cheshire, S. and M. Krochmal, "DNS-Based Service
Discovery", draft-cheshire-dnsext-dns-sd-08 (work in
progress), January 2011.

[I-D.cheshire-nat-pmp]
Cheshire, S., "NAT Port Mapping Protocol (NAT-PMP)",
draft-cheshire-nat-pmp-03 (work in progress), April 2008.

[I-D.touch-tsvwg-port-use]
Touch, J., "Recommendations for Transport Port Uses",
draft-touch-tsvwg-port-use-00 (work in progress),
December 2010.

[IGD] UPnP Forum, "Internet Gateway Device (IGD) V 1.0",
November 2001.

[PORTREG] Internet Assigned Numbers Authority (IANA), "Service Name
and Transport Protocol Port Number Registry",
http://www.iana.org/assignments/port-numbers.

[PROTSERVREG]
Internet Assigned Numbers Authority (IANA), "Protocol and
Service Names Registry",
http://www.iana.org/assignments/service-names.

[RFC0959] Postel, J. and J. Reynolds, "File Transfer Protocol",
STD 9, RFC 959, October 1985.

[RFC1078] Lottor, M., "TCP port service Multiplexer (TCPMUX)",
RFC 1078, November 1988.

[RFC1340] Reynolds, J. and J. Postel, "Assigned Numbers", RFC 1340,

Cotton, et al. Expires August 16, 2011 [Page 29]

Internet-Draft Service Name and Port Number Procedures February 2011

July 1992.

[RFC1700] Reynolds, J. and J. Postel, "Assigned Numbers", RFC 1700,
October 1994,

[RFC2957] Daigle, L. and P. Faltstrom, "The application/
whoispp-query Content-Type", RFC 2957, October 2000.

[RFC3232] Reynolds, J., "Assigned Numbers: RFC 1700 is Replaced by
an On-line Database", RFC 3232, January 2002.

[RFC3692] Narten, T., "Assigning Experimental and Testing Numbers
Considered Useful", BCP 82, RFC 3692, January 2004.

[RFC4342] Floyd, S., Kohler, E., and J. Padhye, "Profile for
Datagram Congestion Control Protocol (DCCP) Congestion
Control ID 3: TCP-Friendly Rate Control (TFRC)", RFC 4342,
March 2006.

[RFC4844] Daigle, L. and Internet Architecture Board, "The RFC
Series and RFC Editor", RFC 4844, July 2007.

[RFC4960] Stewart, R., "Stream Control Transmission Protocol",
RFC 4960, September 2007.

[RFC5237] Arkko, J. and S. Bradner, "IANA Allocation Guidelines for
the Protocol Field", BCP 37, RFC 5237, February 2008.

[RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
"Session Traversal Utilities for NAT (STUN)", RFC 5389,
October 2008.

[RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
Relays around NAT (TURN): Relay Extensions to Session
Traversal Utilities for NAT (STUN)", RFC 5766, April 2010.

[SRVREG] "DNS SRV Service Types Registry",
http://www.dns-sd.org/ServiceTypes.html.

[SYSFORM)] Internet Assigned Numbers Authority (IANA), "Application
for System (Well Known) Port Number",
http://www.iana.org/.

[TRILOGY] "Trilogy Project", http://www.trilogy-project.org/.

[USRFORM] Internet Assigned Numbers Authority (IANA), "Application
for User (Registered) Port Number", http://www.iana.org/.

Cotton, et al. Expires August 16, 2011 [Page 30]

Internet-Draft Service Name and Port Number Procedures February 2011

Authors’ Addresses

Michelle Cotton

Internet Corporation for Assigned Names and Numbers
4676 Admiralty Way, Suite 330

Marina del Rey, CA 90292

USA

Phone: +1 310 823 9358
Email: michelle.cotton@icann.org
URI: http://www.iana.org/

Lars Eggert

Nokia Research Center
P.O. Box 407

Nokia Group 00045
Finland

Phone: +358 50 48 24461
Email: lars.eggert@nokia.com
URI: http://research.nokia.com/people/lars_eggert/

Joe Touch

usc/isi

4676 Admiralty Way
Marina del Rey, CA 90292
USA

Phone: +1 310 448 9151
Email: touch@isi.edu
URI: http://www.isi.edu/touch

Magnus Westerlund
Ericsson

Farogatan 6
Stockholm 164 80
Sweden

Phone: +46 8 719 0000
Email: magnus.westerlund@ericsson.com

Cotton, et al. Expires August 16, 2011 [Page 31]

Internet-Draft Service Name and Port Number Procedures February 2011

Stuart Cheshire
Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
USA

Phone: +1 408 974 3207
Email: cheshire@apple.com

Cotton, et al. Expires August 16, 2011 [Page 32]

Network Working Group R. Stewart

Internet-Draft Adara Networks

Intended status: Standards Track M. Tuexen

Expires: June 10, 2012 Muenster Univ. of Appl. Sciences
P. Lei

Cisco Systems, Inc.
December 8, 2011

Stream Control Transmission Protocol (SCTP) Stream Reconfiguration
draft-ietf-tsvwg-sctp-strrst-13.txt

Abstract

Many applications that use SCTP want the ability to "reset” a stream.
The intention of resetting a stream is to set the numbering sequence
of the stream back to 'zero’ with a corresponding notification to the
application layer that the reset has been performed. Applications
requiring this feature want it so that they can "re-use" streams for
different purposes but still utilize the stream sequence number so
that the application can track the message flows. Thus, without this
feature, a new use of an old stream would result in message numbers
greater than expected unless there is a protocol mechanism to "reset
the streams back to zero". This document also includes methods for
resetting the transport sequence numbers, adding additional streams
and resetting all stream sequence numbers.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. Itis inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on June 10, 2012,

Copyright Notice

Copyright (¢) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.

Stewart, et al. Expires June 10, 2012 [Page 1]

Internet-Draft SCTP Stream Reconfiguration December 2011

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must

include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as

described in the Simplified BSD License.

Table of Contents

1. Introduction L. 4

2. Conventions 4

3. NewChunkType 4
3.1. RE-CONFIGChunk 5

4. New Parameter Types 6

4.1. Outgoing SSN Reset Request Parameter 7
4.2. Incoming SSN Reset Request Parameter 8

4.3. SSN/TSN Reset Request Parameter 9
4.4. Re-configuration Response Parameter 9

4.5. Add Outgoing Streams Request Parameter 11
4.6. Add Incoming Streams Request Parameter 12

5. Procedures 13
5.1. Sender Side Procedures 13

5.1.1. Sender Side Procedures for the RE-CONFIG Chunk

5.1.2. Sender Side Procedures for the Outgoing SSN Reset

Request Parameter 14
5.1.3. Sender Side Procedures for the Incoming SSN Reset
Request Parameter 15
5.1.4. Sender Side Procedures for the SSN/TSN Reset
Request Parameter 16
5.1.5. Sender Side Procedures for the Re-configuration
Response Parameter 16
5.1.6. Sender Side Procedures for the Add Outgoing
Streams Request Parameter 17
5.1.7. Sender Side Procedures for the Add Incoming
Streams Request Parameter 17
5.2. Receiver Side Procedures 18

5.2.1. Receiver Side Procedures for the RE-CONFIG Chunk . . .

5.2.2. Receiver Side Procedures for the Outgoing SSN
Reset Request Parameter 18
5.2.3. Receiver Side Procedures for the Incoming SSN
Reset Request Parameter 19
5.2.4. Receiver Side Procedures for the SSN/TSN Reset
Request Parameter 20
5.2.5. Receiver Side Procedures for the Add Outgoing

Stewart, et al. Expires June 10, 2012 [Page 2]

13

18

Internet-Draft SCTP Stream Reconfiguration December 2011

Streams Request Parameter 21
5.2.6. Receiver Side Procedures for the Add Incoming
Streams Request Parameter 21
5.2.7. Receiver Side Procedures for the Re-configuration
Response Parameter 21
6. Socket API Considerations 22
6.1. Events......... 22
6.1.1. StreeamResetEvent.................. 23
6.1.2. Association ResetEvent 24
6.1.3. Stream Change Event 25
6.2. Event Subscription 26
6.3. SocketOptions 26
6.3.1. Enable/Disable Stream Reset
(SCTP_ENABLE_STREAM_RESET).............. 27
6.3.2. Reset Incoming and/or Outgoing Streams
(SCTP_RESET_STREAMS) 28
6.3.3. Reset SSN/TSN (SCTP_RESET_ASSOC)........... 28
6.3.4. Add Incoming and/or Outgoing Streams
(SCTP_ADD _STREAMS) 29
7. Security Considerations 29
8. IANA Considerations 30
8.1. ANewChunkType 30
8.2. Six New Chunk Parameter Types 30
9. Acknowledgments 31
10.References L. 31
10.1. Normative References 31
10.2. Informative References 31
Appendix A. Examples of the Re-configuration procedures 32
Authors’ Addresses 33

Stewart, et al. Expires June 10, 2012 [Page 3]

Internet-Draft SCTP Stream Reconfiguration December 2011

1. Introduction

Many applications that use SCTP as defined in [RFC4960] want the
ability to "reset" a stream. The intention of resetting a stream is

to set the stream sequence numbers (SSNs) of the stream back to
'zero’ with a corresponding notification to the application layer

that the reset has been performed. Applications requiring this

feature want to "re-use" streams for different purposes but still

utilize the stream sequence number so that the application can track
the message flows. Thus, without this feature, a new use of an old
stream would result in message numbers greater than expected unless
there is a protocol mechanism to "reset the streams back to zero".
This document also includes methods for resetting the transport
sequence numbers (TSNs), adding additional streams and resetting all
stream sequence numbers.

The socket API for SCTP defined in [I-D.ietf-tsvwg-sctpsocket]

exposes the sequence numbers used by SCTP for user message transfer.
Therefore, resetting them can be used by application writers. Please

note that the corresponding sequence number for TCP is not exposed

via the socket API for TCP.

2. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

3. New Chunk Type

This section defines the new chunk type that will be used to re-
configure streams. Table 1 illustrates the new chunk type.

+ + +
| Chunk Type | Chunk Name |

+ + 4

| Ox82 | Re-configuration Chunk (RE-CONFIG) |
+ + +

Table 1

It should be noted that the format of the RE-CONFIG chunk requires
the receiver to ignore the chunk if it is not understood and continue
processing all chunks that follow. This is accomplished by the use
of the upper bits of the chunk type as described in section 3.2 of
[RFC4960].

Stewart, et al. Expires June 10, 2012 [Page 4]

Internet-Draft SCTP Stream Reconfiguration December 2011

All transported integer numbers are in "network byte order" a.k.a.,
Big Endian.

3.1. RE-CONFIG Chunk

This document adds one new chunk type to SCTP. The chunk has the
following format:

0 1 2 3
01234567890123456789012345678901

S A O S A O O S A S OO S A O O S O S
| Type =0x82 | Chunk Flags | Chunk Length |
e St L e it S LS

\ \

/ Re-configuration Parameter /

\ \

T T I T T T et S R I
\ \

/ Re-configuration Parameter (optional) /

\

B e e n ol S S S S S S
Chunk Type: 1 byte (unsigned integer)
This field holds the IANA defined chunk type for the RE-CONFIG
chunk. The suggested value of this field for IANA is 0x82.

Chunk Flags: 1 byte (unsigned integer)
This field is set to 0 by the sender and ignored by the receiver.

Chunk Length: 2 bytes (unsigned integer)
This field holds the length of the chunk in bytes, including the
Chunk Type, Chunk Flags and Chunk Length.

Re-configuration Parameter
This field holds a Re-configuration Request Parameter or a Re-
configuration Response Parameter.

Note that each RE-CONFIG chunk holds at least one parameter and at
most two parameters. Only the following combinations are allowed:

1. Outgoing SSN Reset Request Parameter.
2. Incoming SSN Reset Request Parameter.

3. Outgoing SSN Reset Request Parameter, Incoming SSN Reset Request
Parameter.

Stewart, et al. Expires June 10, 2012 [Page 5]

Internet-Draft SCTP Stream Reconfiguration December 2011

8.

9.

SSN/TSN Reset Request Parameter.
Add Outgoing Streams Request Parameter.
Add Incoming Streams Request Parameter.

Add Outgoing Streams Request Parameter, Add Incoming Streams
Request Parameter.

Re-configuration Response Parameter.

Re-configuration Response Parameter, Outgoing SSN Reset Request
Parameter.

10. Re-configuration Response Parameter, Re-configuration Response

Parameter.

If a sender transmits an unsupported combination, the receiver SHOULD
send an ERROR chunk with a Protocol Violation cause as defined in
section 3.3.10.13 of [RFC4960]).

4. New Parameter Types

This section defines the new parameter types that will be used in the
RE-CONFIG chunk. Table 2 illustrates the new parameter types.

+ + +
| Parameter Type | Parameter Name |
+ + +
0Ox000d	Outgoing SSN Reset Request Parameter
0x000e	Incoming SSN Reset Request Parameter
Ox000f	SSN/TSN Reset Request Parameter
0x0010	Re-configuration Response Parameter
0x0011	Add Outgoing Streams Request Parameter
0x0012	Add Incoming Streams Request Parameter
+ + +

Table 2

It should be noted that the parameter format requires the receiver to
stop processing the parameter and not to process any further
parameters within the chunk if the parameter type is not recognized.
This is accomplished by the use of the upper bits of the parameter
type as described in section 3.2.1 of [RFC4960].

All transported integer numbers are in "network byte order" a.k.a.,
Big Endian.

Stewart, et al. Expires June 10, 2012 [Page 6]

Internet-Draft SCTP Stream Reconfiguration December 2011

4.1. Outgoing SSN Reset Request Parameter

This parameter is used by the sender to request the reset of some or
all outgoing streams.

0 1 2 3
01234567890123456789012345678901

B s e o T I L e S e s i ot T S SR SR S e
| Parameter Type = 0x000d | Parameter Length =16 + 2 * N |
+-t-+-F-+-t-t-+-+-F-t-t-t-t -ttt -ttt bbb+
| Re-configuration Request Sequence Number |

s T T L s S T e T L s
| Re-configuration Response Sequence Number |

B s e o T I L e S e s i ot T S SR SR S e
| Sender’s Last Assigned TSN |
+-t-+-F-+-t-t-+-+-F-t-t-t-t -ttt -ttt bbb+
| Stream Number 1 (optional) | Stream Number 2 (optional) |
s T T L s S T e T L s
/L /

B s e o T I L e S e s i ot T S SR SR S e
| Stream Number N-1 (optional) | Stream Number N (optional) |
+-t-+-F-+-t-t-+-+-F-t-t-t-t -ttt -ttt bbb+

Parameter Type: 2 bytes (unsigned integer)
This field holds the IANA defined parameter type for the Outgoing
SSN Reset Request Parameter. The suggested value of this field
for IANA is 0x000d.

Parameter Length: 2 bytes (unsigned integer)
This field holds the length in bytes of the parameter; the value
MUST be 16 + 2 * N, where N is the number of stream numbers
listed.

Re-configuration Request Sequence Number: 4 bytes (unsigned integer)
This field is used to identify the request. It is a monotonically
increasing number that is initialized to the same value as the
Initial TSN number. It is increased by 1 whenever sending a new
Re-configuration Request parameter.

Re-configuration Response Sequence Number: 4 bytes (unsigned
integer)
When this Outgoing SSN Reset Request Parameter is sent in response
to an Incoming SSN Reset Request Parameter this parameter is also
an implicit response to the incoming request. Then this field
holds the Re-configuration Request Sequence Number of the incoming
request. In other cases it holds the next expected Re-
configuration Request Sequence Number minus 1.

Stewart, et al. Expires June 10, 2012 [Page 7]

Internet-Draft SCTP Stream Reconfiguration December 2011

Sender’s last assigned TSN: 4 bytes (unsigned integer)
This value holds the next TSN minus 1, in other words the last TSN
that this sender assigned.

Stream Number 1..N: 2 bytes (unsigned integer)
This optional field, if included, is used to indicate specific
streams that are to be reset. If no streams are listed, then all
streams are to be reset.

This parameter can appear in a RE-CONFIG chunk. This parameter MUST
NOT appear in any other chunk type.

4.2. Incoming SSN Reset Request Parameter

This parameter is used by the sender to request that the peer resets
some or all of its outgoing streams.

0 1 2 3
01234567890123456789012345678901
B e T e St N O ity ey SC
| Parameter Type = 0x000e | Parameter Length=8+2* N |
B S R s o S S S S e it R
| Re-configuration Request Sequence Number |

s T T L s S T e T L s
| Stream Number 1 (optional) | Stream Number 2 (optional) |
B e T e St N O ity ey SC
/L /

B S R s o S S S S e it R
| Stream Number N-1 (optional) | Stream Number N (optional) |
s T T L s S T e T L s

Parameter Type: 2 bytes (unsigned integer)
This field holds the IANA defined parameter type for the Incoming
SSN Reset Request Parameter. The suggested value of this field
for IANA is 0x000e.

Parameter Length: 2 bytes (unsigned integer)
This field holds the length in bytes of the parameter; the value
MUST be 8 + 2 * N.

Re-configuration Request Sequence Number: 4 bytes (unsigned integer)
This field is used to identify the request. It is a monotonically
increasing number that is initialized to the same value as the
Initial TSN number. It is increased by 1 whenever sending a new
Re-configuration Request parameter.

Stewart, et al. Expires June 10, 2012 [Page 8]

Internet-Draft SCTP Stream Reconfiguration December 2011

Stream Number 1..N: 2 bytes (unsigned integer)
This optional field, if included, is used to indicate specific
streams that are to be reset. If no streams are listed, then alll
streams are to be reset.

This parameter can appear in a RE-CONFIG chunk. This parameter MUST
NOT appear in any other chunk type.

4.3. SSN/TSN Reset Request Parameter

This parameter is used by the sender to request a reset of the TSN
and SSN numbering of all incoming and outgoing streams.

0 1 2 3
01234567890123456789012345678901
B S R s o S S S S e it R
| Parameter Type = 0x000f | Parameter Length=8 |

s T T L s S T e T L s
| Re-configuration Request Sequence Number |
B e T e St N O ity ey SC

Parameter Type: 2 bytes (unsigned integer)
This field holds the IANA defined parameter type for the SSN/TSN
Reset Request Parameter. The suggested value of this field for
IANA is 0x000f.

Parameter Length: 2 bytes (unsigned integer)
This field holds the length in bytes of the parameter; the value
MUST be 8.

Re-configuration Request Sequence Number: 4 bytes (unsigned integer)
This field is used to identify the request. It is a monotonically
increasing number that is initialized to the same value as the
Initial TSN number. Itis increased by 1 whenever sending a new
Re-configuration Request parameter.

This parameter can appear in a RE-CONFIG chunk. This parameter MUST
NOT appear in any other chunk type.

4.4. Re-configuration Response Parameter

This parameter is used by the receiver of a Re-configuration Request
parameter to respond to the request.

Stewart, et al. Expires June 10, 2012 [Page 9]

Internet-Draft SCTP Stream Reconfiguration December 2011

0 1 2 3
01234567890123456789012345678901
B e e n ol S S S S S S
| Parameter Type = 0x0010 | Parameter Length |

T T I T T T et S R I
| Re-configuration Response Sequence Number |

s T T L L e e L aan T S L e T S
| Result |

B e e n ol S S S S S S
| Sender’s next TSN (optional) |

T T I T T T et S R I
| Receiver's next TSN (optional) |

s T T L L e e L aan T S L e T S

Parameter Type: 2 bytes (unsigned integer)
This field holds the IANA defined parameter type for Re-
configuration Response Parameter. The suggested value of this
field for IANA is 0x0010.

Parameter Type Length: 2 bytes (unsigned integer)
This field holds the length in bytes of the parameter; the value
MUST be 12 if the optional fields are not present and 20
otherwise.

Re-configuration Response Sequence Number: 4 bytes (unsigned
integer)
This value is copied from the request parameter and is used by the
receiver of the Re-configuration Response Parameter to tie the
response to the request.

Result: 4 bytes (unsigned integer)
This value describes the result of the processing of the request.
It is encoded as given by the following table

+ + +
| Result | Description |
+ + +
0	Success - Nothing to do
1	Success - Performed
2	Denied
3	Error - Wrong SSN
4	Error - Request already in progress
5	Error - Bad Sequence Number
6	Inprogress
Table 3

Stewart, et al. Expires June 10, 2012 [Page 10]

Internet-Draft SCTP Stream Reconfiguration December 2011

Sender’s next TSN: 4 bytes (unsigned integer)
This field holds the TSN the sender of the response will use to
send the next DATA chunk. The field is only applicable in
responses to SSN/TSN reset requests.

Receiver's next TSN: 4 bytes (unsigned integer)
This field holds the TSN the receiver of the response must use to
send the next DATA chunk. The field is only applicable in
responses to SSN/TSN reset requests.

Either both optional fields (Sender’'s next TSN and Receiver’s next
TSN) MUST be present or none.

This parameter can appear in a RE-CONFIG chunk. This parameter MUST
NOT appear in any other chunk type.

4.5. Add Outgoing Streams Request Parameter

This parameter is used by the sender to request that an additional
number of outgoing streams (i.e. the receiver’s incoming streams) be
added to the association.

0 1 2 3
01234567890123456789012345678901

e e S AL O LU O S O O AL SO OO O S
| Parameter Type =0x0011 | Parameter Length =12 |
B e e n ol S S S S S S
| Re-configuration Request Sequence Number |

S L M L U OO O S I S O AL SO L SO S
| Number of new streams | Reserved |

e S L e M L OO L O O S o e O LSO UL SO S

Parameter Type: 2 bytes (unsigned integer)
This field holds the IANA defined parameter type for the the Add
Outgoing Streams Request Parameter. The suggested value of this
field for IANA is 0x0011.

Parameter Length: 2 bytes (unsigned integer)
This field holds the length in bytes of the parameter; the value
MUST be 12.

Re-configuration Request Sequence Number: 4 bytes (unsigned integer)
This field is used to identify the request. It is a monotonically
increasing number that is initialized to the same value as the
Initial TSN number. Itis increased by 1 whenever sending a new
Re-configuration Request parameter.

Stewart, et al. Expires June 10, 2012 [Page 11]

Internet-Draft SCTP Stream Reconfiguration December 2011

Number of new streams: 2 bytes (unsigned integer)
This value holds the number of additional outgoing streams the
sender requests to be added to the association. Streams are added
in order and are consecutive, e.g. if an association has four
outgoing streams (0-3) and a requested is made to add 3 streams
then the new streams will be 4, 5 and 6.

Reserved: 2 bytes (unsigned integer)
This field is reserved. It SHOULD be set to 0 by the sender and
ignored by the receiver.

This parameter MAY appear in a RE-CONFIG chunk. This parameter MUST
NOT appear in any other chunk type.

4.6. Add Incoming Streams Request Parameter

This parameter is used by the sender to request that the peer adds an
additional number of outgoing streams (i.e. the sender’s incoming
streams) to the association.

0 1 2 3
01234567890123456789012345678901
s e e L e S £
| Parameter Type =0x0012 | Parameter Length=12 |
L e s L s s o o s O SR
| Re-configuration Request Sequence Number |
B e e n ol S S S S S S
| Number of new streams | Reserved [
s e e L s s T S

Parameter Type: 2 bytes (unsigned integer)
This field holds the IANA defined parameter type for the the Add
Incoming Streams Request Parameter. The suggested value of this
field for IANA is 0x0012.

Parameter Length: 2 bytes (unsigned integer)
This field holds the length in bytes of the parameter; the value
MUST be 12.

Re-configuration Request Sequence Number: 4 bytes (unsigned integer)
This field is used to identify the request. It is a monotonically
increasing number that is initialized to the same value as the
Initial TSN number. It is increased by 1 whenever sending a new
Re-configuration Request parameter.

Stewart, et al. Expires June 10, 2012 [Page 12]

Internet-Draft SCTP Stream Reconfiguration December 2011

Number of new streams: 2 bytes (unsigned integer)
This value holds the number of additional incoming streams the
sender requests to be added to the association. Streams are added
in order and are consecutive, e.g. if an association has four
outgoing streams (0-3) and a requested is made to add 3 streams
then the new streams will be 4, 5 and 6.

Reserved: 2 bytes (unsigned integer)
This field is reserved. It SHOULD be set to 0 by the sender and
ignored by the receiver.

This parameter MAY appear in a RE-CONFIG chunk. This parameter MUST
NOT appear in any other chunk type.

5. Procedures

This section defines the procedures used by both the sender and
receiver of a RE-CONFIG chunk. Various examples of re-configuration
scenarios are given in Appendix A.

One important thing to remember about SCTP streams is that they are
uni-directional. The endpoint for which a stream is an outgoing
stream is called the outgoing side, the endpoint for which the stream
is an incoming stream is called the incoming side. The procedures
outlined in this section are designed so that the incoming side will
always reset their stream sequence number first before the outgoing
side which means the re-configuration request must always originate
from the outgoing side. These two issues have important
ramifications upon how an SCTP endpoint might request that its
incoming streams be reset. In effect it must ask the peer to start

an outgoing reset procedure and once that request is acknowledged let
the peer actually control the reset operation.

5.1. Sender Side Procedures
This section describes the procedures related to the sending of RE-
CONFIG chunks. A RE-CONFIG chunk is composed of one or two Type
Length Value (TLV) parameters.

5.1.1. Sender Side Procedures for the RE-CONFIG Chunk

This SCTP extension uses the Supported Extensions Parameter defined
in [RFC5061] for negotiating the support for it.

An SCTP endpoint supporting this extension MUST include the chunk

type of the RE-CONFIG chunk in the Supported Extensions Parameter in
either the INIT or INIT-ACK. Before sending a RE-CONFIG chunk the

Stewart, et al. Expires June 10, 2012 [Page 13]

Internet-Draft SCTP Stream Reconfiguration December 2011

sender MUST ensure that the peer advertised support for the re-
configuration extension. If the chunk type of the RE-CONFIG chunk
does not appear in the supported extensions list of chunks, then the
sender MUST NOT send any re-configuration request to the peer, and
any request by the application for such service SHOULD be responded
to with an appropriate error indicating the peer SCTP stack does not
support the re-configuration extension.

At any given time there MUST NOT be more than one request be in
flight. So if the Re-configuration Timer is running and the the RE-
CONFIG chunk contains at least one request parameter the chunk MUST
be buffered.

After packaging the RE-CONFIG chunk and sending it to the peer the
sender MUST start the Re-configuration Timer if the RE-CONFIG chunk
contains at least one request parameter. If it contains no request
parameters, the Re-configuration Timer MUST NOT be started. This
timer MUST use the same value as SCTP’s Data transmission timer (i.e.
the RTO timer) and MUST use exponential backoff doubling the value at
every expiration. If the timer expires, besides doubling the value,

the sender MUST retransmit the RE-CONFIG chunk, increment the
appropriate error counts (both for the association and the

destination), and perform threshold management possibly destroying
the association if SCTP retransmission thresholds are exceeded.

5.1.2. Sender Side Procedures for the Outgoing SSN Reset Request
Parameter

When an SCTP sender wants to reset the SSNs of some or all outgoing
streams it can send an Outgoing SSN Reset Request Parameter provided
that the Re-configuration Timer is not running. The following steps

must be followed:

Al: The sender MUST stop assigning new SSNs to new user data
provided by the upper layer for the affected streams and queue
it. This is because it is not known whether the receiver of the
request will accept or deny it and moreover, a lost request
might cause an out-of-sequence error in a stream that the
receiver is not yet prepared to handle.

A2: The sender MUST assign the next re-configuration request
sequence number and MUST put it into the Re-configuration
Request Sequence Number field of the Outgoing SSN Reset Request
Parameter. The next re-configuration request sequence number
MUST then be incremented by 1.

Stewart, et al. Expires June 10, 2012 [Page 14]

Internet-Draft SCTP Stream Reconfiguration December 2011

A3: The Sender’s Last Assigned TSN MUST be set to the next TSN the
sender assigns minus 1.

A4: If this Outgoing SSN Reset Request Parameter is sent in response
to an Incoming SSN Reset Request Parameter the Stream Numbers
MUST be copied from the Incoming SSN Reset Request Parameter to
the Outgoing SSN Reset Request Parameter. The Re-configuration
Response Sequence Number of the Outgoing SSN Reset Request
Parameter MUST be the Re-configuration Request Sequence Number
of the Incoming SSN Reset Request Parameter. If this Outgoing
SSN Reset Request Parameter is sent at the request of the upper
layer and the sender requests all outgoing streams to be reset
Stream Numbers SHOULD NOT be put into the Outgoing SSN Reset
Request Parameter. If the sender requests only some outgoing
streams to be reset these Stream Numbers MUST be placed in the
Outgoing SSN Reset Request Parameter. Re-configuration Response
Sequence Number is the next expected Re-configuration Request
Sequence Number of the peer minus 1.

A5: The Outgoing SSN Reset Request Parameter MUST be put into a RE-
CONFIG Chunk. The Outgoing SSN Reset Request Parameter MAY be
put together with either an Incoming SSN Reset Request Parameter
or an Re-configuration Response Parameter but not both. It MUST
NOT be put together with any other parameter as described in
Section 3.1.

A6: The RE-CONFIG chunk MUST be sent following the rules given in
Section 5.1.1.

5.1.3. Sender Side Procedures for the Incoming SSN Reset Request
Parameter

When an SCTP sender wants to reset the SSNs of some or all incoming
streams it can send an Incoming SSN Reset Request Parameter provided
that the Re-configuration Timer is not running. The following steps

must be followed:

B1: The sender MUST assign the next re-configuration request
sequence number and MUST put it into the Re-configuration
Request Sequence Number field of the Incoming SSN Reset Request
Parameter. After assigning it the next re-configuration request
sequence number MUST be incremented by 1.

B2: If the sender wants all incoming streams to be reset Stream
Numbers SHOULD NOT be put into the Incoming SSN Reset Request
Parameter. If the sender wants only some incoming streams to be
reset these Stream Numbers MUST be filled in the Incoming SSN
Reset Request Parameter.

Stewart, et al. Expires June 10, 2012 [Page 15]

Internet-Draft SCTP Stream Reconfiguration December 2011

B3: The Incoming SSN Reset Request Parameter MUST be put into a RE-
CONFIG Chunk. It MAY be put together with an Outgoing SSN Reset
Request Parameter but MUST NOT be put together with any other
parameter.

B4: The RE-CONFIG chunk MUST be sent following the rules given in
Section 5.1.1.

When sending an Incoming SSN Reset Request there is a potential that
the peer has just reset or is in the process of resetting the same
streams via an Outgoing SSN Reset Request. This collision scenario

is discussed in Section 5.2.3.

5.1.4. Sender Side Procedures for the SSN/TSN Reset Request Parameter

When an SCTP sender wants to reset the SSNs and TSNs it can send an
SSN/TSN Reset Request Parameter provided that the Re-configuration
Timer is not running. The following steps must be followed:

C1: The sender MUST assign the next re-configuration request
sequence number and put it into the Re-configuration Request
Sequence Number field of the SSN/TSN Reset Request Parameter.
After assigning it the next re-configuration request sequence
number MUST be incremented by 1.

C2: The sender has either no outstanding TSNs or considers all
outstanding TSNs abandoned. The sender MUST queue any user data
suspending any new transmissions and TSN assignment until the
reset procedure is finished by the peer either acknowledging or
denying the request.

C3: The SSN/TSN Reset Request Parameter MUST be put into a RE-CONFIG

chunk. There MUST NOT be any other parameter in this chunk.

C4: The RE-CONFIG chunk MUST be sent following the rules given in
Section 5.1.1.

Only one SSN/TSN Reset Request SHOULD be sent within 30 seconds,
which is considered a maximum segment lifetime, the IP MSL.

5.1.5. Sender Side Procedures for the Re-configuration Response
Parameter

When an implementation receives a reset request parameter it must

respond with a Re-configuration Response Parameter in the following
manner:

Stewart, et al. Expires June 10, 2012 [Page 16]

Internet-Draft SCTP Stream Reconfiguration December 2011

D1: The Re-configuration Request Sequence number of the incoming
request MUST be copied to the Re-configuration Response Sequence
Number field of the Re-configuration Response Parameter.

D2: The result of the processing of the incoming request according
to Table 3 MUST be placed in the Result field of the Re-
configuration Response Parameter.

D3: If the incoming request is an SSN/TSN reset request, the
Sender’s next TSN field MUST be filled with the next TSN the
sender of this Re-configuration Response Parameter will assign.
For other requests the Sender’s next TSN field, which is
optional, MUST NOT be used.

D4: If the incoming request is an SSN/TSN reset request, the
Receiver's next TSN field MUST be filled with a TSN such that
the sender of the Re-configuration Response Parameter can be
sure it can discard received DATA chunks with smaller TSNs. The
value SHOULD be the smallest TSN not acknowledged by the
receiver of the request plus 2731. For other requests the
Receiver’s next TSN field, which is optional, MUST NOT be used.

5.1.6. Sender Side Procedures for the Add Outgoing Streams Request
Parameter

When an SCTP sender wants to increase the number of outbound streams
to which it is able to send, it may add an Add Outgoing Streams

Request parameter to the RE-CONFIG chunk. Upon sending the request
the sender MUST await a positive acknowledgment (Success) before
using any additional stream added by this request. Note that new

streams are added adjacent to the previous streams with no gaps.

This means that if a request is made to add 2 streams to an

association that has already 5 (0-4) then the new streams, upon
successful completion, are streams 5 and 6. A new stream MUST use

the stream sequence number O for its first ordered message.

5.1.7. Sender Side Procedures for the Add Incoming Streams Request
Parameter

When an SCTP sender wants to increase the number of inbound streams
to which the peer is able to send, it may add an Add Incoming Streams
Request parameter to the RE-CONFIG chunk. Note that new streams are
added adjacent to the previous streams with no gaps. This means that

if a request is made to add 2 streams to an association that has

already 5 (0-4) then the new streams, upon successful completion, are
streams 5 and 6. A new stream MUST use the stream sequence number O
for its first ordered message.

Stewart, et al. Expires June 10, 2012 [Page 17]

Internet-Draft SCTP Stream Reconfiguration December 2011

5.2. Receiver Side Procedures
5.2.1. Receiver Side Procedures for the RE-CONFIG Chunk

Upon reception of a RE-CONFIG chunk each parameter within it SHOULD
be processed. If multiple parameters have to be returned, they MUST

be put into one RE_CONFIG chunk. If the received RE-CONFIG chunk
contains at least one request parameter, a SACK chunk SHOULD be sent
back and MAY be bundled with the RE-CONFIG chunk. If the received
RE-CONFIG chunk contains at least one request and based on the
analysis of the Re-configuration Request Sequence Numbers this is the
last received RE-CONFIG chunk (i.e. a retransmission), the same RE-
CONFIG chunk MUST to be sent back in response as was earlier.

The decision to deny a re-configuration request is an administrative
decision and may be user configurable even after the association has
formed. If for whatever reason the endpoint does not wish to process
a received request parameter it MUST send a corresponding response
parameter as described in Section 5.1.5 with an appropriate Result
field.

Implementation Note: A SACK is recommended to be bundled with any re-
configuration response so that any retransmission processing that

needs to occur can be expedited. A SACK chunk is not required for

this feature to work, but it will in effect help minimize the delay

in completing a re-configuration operation in the face of any data

loss.

5.2.2. Receiver Side Procedures for the Outgoing SSN Reset Request
Parameter

In the case that the endpoint is willing to perform a stream reset
the following steps must be followed:

El: If the Re-configuration Timer is running for the Re-
configuration Request Sequence Number indicated in the Re-
configuration Response Sequence Number field, the Re-
configuration Request Sequence Number MUST be marked as
acknowledged. If all Re-configuration Request Sequence Numbers
the Re-configuration Timer is running for are acknowledged, the
Re-configuration Timer MUST be stopped.

E2: If the Sender’s Last Assigned TSN number is greater than the
cumulative acknowledgment point, then the endpoint MUST enter
"deferred reset processing”. In this mode, any data arriving
with a TSN number larger than the 'senders last assigned TSN’
for the affected stream(s) MUST be queued locally and held until
the Cumulative Acknowledgment point reaches the 'senders last

Stewart, et al. Expires June 10, 2012 [Page 18]

Internet-Draft SCTP Stream Reconfiguration December 2011

assigned TSN number’. When the Cumulative Acknowledgment point
reaches the last assigned TSN number then proceed to the next

step. If the endpoint enters "deferred reset processing"”, it

MUST put a Re-configuration Response Parameter into a RE-CONFIG
chunk indicating 'In progress’ and MUST send the RE-CONFIG

chunk.

E3: If no Stream Numbers are listed in the parameter, then all
incoming streams MUST be reset to 0 as the next expected stream
sequence number. If specific Stream Numbers are listed, then
only these specific streams MUST be reset to 0 and all other
non-listed stream sequence numbers remain unchanged.

E4: Any queued TSN'’s (queued at step E2) MUST now be released and
processed normally.

E5: A Re-configuration Response Parameter MUST be put into a RE-
CONFIG chunk indicating successful processing.

E6: The RE-CONFIG chunk MUST be sent after the incoming RE-CONFIG
chunk is processed completely.

5.2.3. Receiver Side Procedures for the Incoming SSN Reset Request
Parameter

In the case that the endpoint is willing to perform a stream reset
the following steps must be followed:

F1: An Outgoing SSN Reset Request Parameter MUST be put into an RE-
CONFIG chunk according to Section 5.1.2.

F2: The RE-CONFIG chunk MUST be sent after the incoming RE-CONFIG
chunk is processed completely.

When a peer endpoint requests an Incoming SSN Reset Request it is
possible that the local endpoint has just sent an Outgoing SSN Reset
Request on the same association and has not yet received a response.
In such a case the local endpoint MUST do the following:

o If the just sent Outgoing SSN Reset Request Parameter completely
overlaps the received Incoming SSN Reset Request Parameter respond
to the peer with an acknowledgment indicating that there was
'Nothing to do’.

o Otherwise process the Incoming SSN Reset Request Parameter
normally responding to the peer with an acknowledgment. Note that
this case includes the situation where some of the streams
requested overlap with the just sent Outgoing SSN Reset Request.

Stewart, et al. Expires June 10, 2012 [Page 19]

Internet-Draft SCTP Stream Reconfiguration December 2011

Even in such a situation the Incoming SSN Reset MUST be processed
normally even though this means that (if the endpoint elects to do

the stream reset) streams that are already at SSN 0, will be reset

a subsequent time.

It is also possible that the Incoming request will arrive after the
Outgoing SSN Reset Request just completed. In such a case all of the
streams being requested will be already set to 0. If so, the local
endpoint SHOULD send back a Re-configuration Response with the
success code "Nothing to do".

Note that in either race condition the local endpoint could

optionally also perform the reset. This would result in streams that

are already at sequence 0 being reset again to 0 which would cause no
harm to the application but will add an extra message to the network.

5.2.4. Receiver Side Procedures for the SSN/TSN Reset Request Parameter

In the case that the endpoint is willing to perform an SSN/TSN reset
the following steps must be followed:

G1: Compute an appropriate value for the Receiver’s next TSN, the
TSN the peer should use to send the next DATA chunk. The value
SHOULD be the smallest TSN not acknowledged by the receiver of
the request plus 2731.

G2: Compute an appropriate value for the local endpoint’s next TSN,
i.e. the receiver of the SSN/TSN reset chunk next TSN to be
assigned. The value SHOULD be the highest TSN sent by the
receiver of the request plus 1.

G3: The same processing as if a SACK chunk with no gap report and a
cumulative TSN ACK of Sender’s next TSN minus 1 was received
MUST be performed.

G4: The same processing as if a FWD-TSN chunk as defined in
[RFC3758] with all streams affected and a new cumulative TSN ACK
of Receiver’'s next TSN minus 1 was received MUST be performed.

G5: The next expected and outgoing stream sequence numbers MUST be
reset to 0 for all incoming and outgoing streams.

G6: A Re-configuration Response Parameter MUST be put into a RE-
CONFIG chunk indicating successful processing.

Stewart, et al. Expires June 10, 2012 [Page 20]

Internet-Draft SCTP Stream Reconfiguration December 2011

G7: The RE-CONFIG chunk MUST be sent after the incoming RE-CONFIG
chunk is processed completely.

5.2.5. Receiver Side Procedures for the Add Outgoing Streams Request
Parameter

When an SCTP endpoint receives a re-configuration request adding
additional streams, it MUST send a response parameter either
acknowledging or denying the request. If the response is successful
the receiver MUST add the requested number of inbound streams to the
association, initializing the next expected stream sequence number to
be 0. The SCTP endpoint SHOULD deny the request if the number of
streams exceeds a limit which should be configurable by the
application.

5.2.6. Receiver Side Procedures for the Add Incoming Streams Request
Parameter

When an SCTP endpoint receives a re-configuration request adding
additional incoming streams, it MUST either send a response parameter
denying the request or sending a corresponding Add Outgoing Streams
Request Parameter following the rules given in Section 5.1.6. The
SCTP endpoint SHOULD deny the request if the number of streams
exceeds a limit which should be configurable by the application.

5.2.7. Receiver Side Procedures for the Re-configuration Response
Parameter

On receipt of a Re-configuration Response Parameter the following
must be performed:

H1: If the Re-confguration Timer is running for the Re-configuration
Request Sequence Number indicated in the Re-configuration
Response Sequence Number field, the Re-configuration Request
Sequence Number MUST be marked as acknowledged. If all Re-
configuration Request Sequence Numbers the Re-configuration
Timer is running for are acknowledged, the Re-configuration
Timer MUST be stopped. If the timer was not running for the Re-
configuration Request Sequence Number, the processing of the Re-
configuration Response Parameter is complete.

H2: If the Result field indicates 'In progress’, the timer for the
Re-configuration Request Sequence Number is started again. If
the timer runs off, the RE-CONFIG chunk MUST be retransmitted
but the corresponding error counters MUST NOT be incremented.

Stewart, et al. Expires June 10, 2012 [Page 21]

Internet-Draft SCTP Stream Reconfiguration December 2011

H3: If the Result field does not indicate successful processing the
processing of this response is complete.

H4: If the request was an Outgoing SSN Reset Request the affected
streams MUST now be reset and all queued data should be
processed now and assigning of stream sequence numbers is
allowed again.

H5: If the request was an SSN/TSN Reset Request new data MUST be
sent from Receiver’s next TSN and beginning with stream sequence
number O for all outgoing streams. All incoming streams MUST be
reset to 0 as the next expected stream sequence number. The
peer will send DATA chunks starting with Sender’s next TSN.

H6: If the request was to add outgoing streams, the endpoint MUST
add the additional streams to the association. Note that an
implementation may allocate the memory at the time of the
request, but it MUST NOT use the streams until the peer has
responded with a positive acknowledgment.

6. Socket API Considerations
This section describes how the socket API defined in
[I-D.ietf-tsvwg-sctpsocket] needs to be extended to make the features
of SCTP re-configuration available to the application.
Please note that this section is informational only.

6.1. Events
When the SCTP_ASSOC_CHANGE notification is delivered and both peers
support the extension described in this document,
SCTP_ASSOC_SUPPORTS_RE_CONFIG should be listed in the sac_info field.
The union sctp_notification {} is extended to contain three new

fields: sn_strreset_event, sn_assocreset_event, and
sn_strchange_event:

Stewart, et al. Expires June 10, 2012 [Page 22]

Internet-Draft SCTP Stream Reconfiguration December 2011

union sctp_natification {
struct {
uintl6_t sn_type;
uintl6_t sn_flags;
uint32_t sn_length;
} sn_header;

struct sctp_stream_reset_event sn_strreset_event;

struct sctp_assoc_reset_event sn_assocreset_event;
struct sctp_stream_change_event sn_strchange_event;

.

The corresponding sn_type values are given in Table 4.

+ + +
| sn_type | valid field in union sctp_notification |
+ + +

| SCTP_STREAM_RESET_EVENT | sn_strreset_event

| SCTP_ASSOC_RESET_EVENT | sn_assocreset_event

| SCTP_STREAM_CHANGE_EVENT | sn_strchange_event
+ + +

Table 4

These events are delivered when an incoming request was processed
successfully or the processing of an outgoing request has been
finished.

6.1.1. Stream Reset Event
The event delivered has the following structure:

struct sctp_stream_reset_event {
uintl6 _t strreset_type;
uintl6 _t strreset_flags;
uint32_t strreset_length;
sctp_assoc_t strreset_assoc_id;
uintl6_t strreset_stream_list[];

%
strreset_type: It should be SCTP_STREAM_RESET_EVENT.

strreset_flags: This field is formed from the bitwise OR of one or
more of the following currently defined flags:

Stewart, et al. Expires June 10, 2012 [Page 23]

Internet-Draft SCTP Stream Reconfiguration December 2011

SCTP_STREAM_RESET_INCOMING_SSN: The stream identifiers given in
strreset_stream_list[] refer to incoming streams of the
endpoint.

SCTP_STREAM_RESET_ OUTGOING_SSN: The stream identifiers given in
strreset_stream_list[] refer to outgoing streams of the
endpoint.

SCTP_STREAM_RESET_DENIED: The corresponding request was denied by
the peer.

SCTP_STREAM_RESET_FAILED: The corresponding request failed.

At least one of SCTP_STREAM_RESET_INCOMING_SSN and
SCTP_STREAM_RESET_OUTGOING_SSN is set. SCTP_STREAM_RESET_DENIED
and SCTP_STREAM_RESET_FAILED are mutually exclusive. If the

request was successful, none of these are set.

strreset_length: This field is the total length in bytes of the
delivered event, including the header.

strreset_assoc_id: The association id field, holds the identifier
for the association. All notifications for a given association
have the same association identifier. For one-to-one style
sockets, this field is ignored.

strreset_stream_list: The list of stream identifiers this event
refers to. An empty list identifies all streams as being reset.
Depending on strreset_flags the identifiers refer to incoming or
outgoing streams or both.

6.1.2. Association Reset Event
The event delivered has the following structure:

struct sctp_assoc_reset_event {
uintl6_t assocreset_type;
uintl6_t assocreset_flags;
uint32_t assocreset_length;
sctp_assoc_t assocreset_assoc_id;
uint32_t assocreset_local_tsn;
uint32_t assocreset_remote_tsn;

Stewart, et al. Expires June 10, 2012 [Page 24]

Internet-Draft SCTP Stream Reconfiguration December 2011

assocreset_type: It should be SCTP_ASSOC_RESET_EVENT.

assocreset_flags: This field is formed from the bitwise OR of one or
more of the following currently defined flags:

SCTP_ASSOC_RESET_DENIED: The corresponding outgoing request was
denied by the peer.

SCTP_ASSOC_RESET_FAILED: The corresponding outgoing request
failed.

SCTP_ASSOC_RESET_DENIED and SCTP_ASSOC_RESET_FAILED are mutual
exclusive. If the request was successful, none of these are set.

assocreset_length: This field is the total length in bytes of the
delivered event, including the header.

assocreset_assoc_id: The association id field, holds the identifier
for the association. All notifications for a given association
have the same association identifier. For one-to-one style
sockets, this field is ignored.

assocreset_local_tsn: The next TSN used by the endpoint.

assocreset_remote_tsn: The next TSN used by the peer.
6.1.3. Stream Change Event

The event delivered has the following structure:

struct sctp_stream_change_event {
uintl6_t strchange_type;
uintl6_t strchange_flags;
uint32_t strchange_length;
sctp_assoc_t strchange_assoc_id;
uintl6_t strchange_instrms;
uintl6_t strchange_outstrms;

%
strchange_type: It should be SCTP_STREAM_CHANGE_EVENT.

strchange_flags: This field is formed from the bitwise OR of one or
more of the following currently defined flags:

SCTP_STREAM_CHANGE_DENIED: The corresponding request was denied
by the peer.

Stewart, et al. Expires June 10, 2012 [Page 25]

Internet-Draft SCTP Stream Reconfiguration December 2011

SCTP_STREAM_CHANGE_FAILED: The corresponding request failed.

SCTP_STREAM_CHANGE_DENIED and SCTP_STREAM_CHANGE_FAILED are mutual
exclusive. If the request was successful, none of these are set.

strchange_length: This field is the total length in bytes of the
delivered event, including the header.

strchange_assoc_id: The association id field, holds the identifier
for the association. All notifications for a given association
have the same association identifier. For one-to-one style
sockets, this field is ignored.

strchange_instrms: The number of streams that the peer is allowed to
use outbound.

strchange_outstrms: The number of streams that the endpoint is
allowed to use outbound.

6.2. Event Subscription

Subscribing to events as described in [I-D.ietf-tsvwg-sctpsocket]
uses a setsockopt() call with the SCTP_EVENT socket option. This
option takes the following structure that specifies the association,
the event type (using the same value found in the event type field)
and an on/off boolean.

struct sctp_event {
sctp_assoc_t se_assoc_id;
uintlé_ t se_type;

uint8_t se_on;

g

The user fills in the se_type with the same value found in the
strreset_type field i.e. SCTP_STREAM_RESET_EVENT. The user will
also fill in the se_assoc_id field with either the association to set

this event on (this field is ignored for one-to-one style sockets) or

one of the reserved constant values defined in
[I-D.ietf-tsvwg-sctpsocket]. Finally the se_on field is set with a 1

to enable the event or a 0 to disable the event.

6.3. Socket Options
The following table describes the new socket options which make the
re-configuration features accessible to the user. They all use
IPPROTO_SCTP as their level.

If a call to setsockopt() is used to issue a Re-configuration request

Stewart, et al. Expires June 10, 2012 [Page 26]

Internet-Draft SCTP Stream Reconfiguration December 2011

while the Re-configuration timer is running, setsockopt() will return
-1 and error is set to EALREADY.

+ + B — B — +
| option name | data type | get | set |
+ + — S +
| SCTP_ENABLE_STREAM_RESET | struct sctp_assoc_value | X | X |
| SCTP_RESET_STREAMS | struct sctp_reset_streams | | X |
| SCTP_RESET_ASSOC | sctp_assoc_t | | X |
| SCTP_ADD_STREAMS | struct sctp_add_streams | | X |
+ + e — S — +
Table 5

6.3.1. Enable/Disable Stream Reset (SCTP_ENABLE_STREAM_RESET)

This option allows a user to control whether the SCTP implementation
processes or denies incoming requests in STREAM_RESET chunks.

The default is to deny all incoming requests.
To set or get this option the user fills in the following structure:
struct sctp_assoc_value {

sctp_assoc_t assoc_id;
uint32_t assoc_value;

k
assoc_id: This parameter is ignored for one-to-one style sockets.
For one-to-many style sockets this parameter indicates which

association the user is performing an action upon.

assoc_value: It is formed from the bitwise OR of one or more of the
following currently defined flags:

SCTP_ENABLE_RESET_STREAM_REQ: Process received Incoming/Outgoing
SSN Reset Requests if this flag is set, deny them if not.

SCTP_ENABLE_RESET_ASSOC_REQ: Process received SSN/TSN Reset
Requests if this flag is set, deny them if not.

SCTP_ENABLE_CHANGE_ASSOC_REQ: Process received Add Outgoing
Streams Requests if this flag is set, deny them if not.

The default value is (SCTP_ENABLE_RESET_STREAM_REQ)|
SCTP_ENABLE_RESET_ASSOC_REQ|SCTP_ENABLE_CHANGE_ASSOC_REQ).

Please note that using the option does not have any impact on

Stewart, et al. Expires June 10, 2012 [Page 27]

Internet-Draft SCTP Stream Reconfiguration December 2011

subscribing to any related events.
6.3.2. Reset Incoming and/or Outgoing Streams (SCTP_RESET_STREAMS)

This option allows the user to request the reset of incoming and/or
outgoing streams.

To set or get this option the user fills in the following structure:

struct sctp_reset_streams {
sctp_assoc_t srs_assoc _id;
uintl6_tsrs_flags;

uintl6_t srs_number_streams;
uintl6_t srs_stream_list[];

g

srs_assoc_id: This parameter is ignored for one-to-one style
sockets. For one-to-many style sockets this parameter indicates
which association the user is performing an action upon.

srs_flags: This parameter describes which class of streams is reset.
It is formed from the bitwise OR of one or more of the following
currently defined flags:

* SCTP_STREAM_RESET_INCOMING
* SCTP_STREAM_RESET_OUTGOING

srs_number_streams: This parameter is the number of elements in the
srs_stream_list. If it is zero, the operation is performed on all
streams.

srs_stream_list: This parameter contains a list of stream
identifiers the operation is performed upon. It contains
srs_number_streams elements. If it is empty, the operation is
performed on all streams. Depending on srs_flags the identifiers
refer to incoming or outgoing streams or both.

6.3.3. Reset SSN/TSN (SCTP_RESET_ASSOC)
This option allows a user to request the reset of the SSN/TSN.

To set this option the user provides an option_value of type
sctp_assoc _t.

On one-to-one style sockets the option_value is ignored. For one-to-

many style sockets the option_value is the association identifier of
the association the action is to be performed upon.

Stewart, et al. Expires June 10, 2012 [Page 28]

Internet-Draft SCTP Stream Reconfiguration December 2011

6.3.4. Add Incoming and/or Outgoing Streams (SCTP_ADD_STREAMS)

This option allows a user to request the addition of a number of
incoming and/or outgoing streams.

To set this option the user fills in the following structure:

struct sctp_add_streams {
Sctp_assoc_t sas_assoc_id;
uintl6_t sas_instrms;
uintl6_t sas_outstrms;

g

sas_assoc_id: This parameter is ignored for one-to-one style
sockets. For one-to-many style sockets this parameter indicates
which association the user is performing an action upon.

sas_instrms: This parameter is the number of incoming streams to
add.

sas_outstrms: This parameter is the number of outgoing streams to
add.

An endpoint can limit the number of incoming and outgoing streams by
using the sinit_max_instreams field in the struct sctp_initmsg{} when
issuing an SCTP_INIT socket option, as defined in
[I-D.ietf-tsvwg-sctpsocket]. An incoming request asking for more
streams than allowed will be denied.

7. Security Considerations

The SCTP socket API as described in [I-D.ietf-tsvwg-sctpsocket]
exposes the sequence numbers of received DATA chunks to the
application. An application might expect them to be monotonically
increasing. When using the re-configuration extension this might no
longer be true. Therefore the applications must enable this
extension explicitly before it is used. In addition, applications

must subscribe explicitly to notifications related to the re-
configuration extension before receiving them.

SCTP associations are protected against blind attackers by using the
verification tags. This is still valid when using the re-

configuration extension. Therefore this extension does not add any
additional security risk to SCTP in relation to blind attackers.

When the both sequence numbers are reset, the maximum segment
lifetime is used to avoid the wrap-around for the TSN.

Stewart, et al. Expires June 10, 2012 [Page 29]

Internet-Draft SCTP Stream Reconfiguration December 2011

8. IANA Considerations
[NOTE to RFC-Editor:

"RFCXXXX" is to be replaced by the RFC number you assign this
document.

]
[NOTE to RFC-Editor:

The suggested values for the chunk type and the chunk parameter
types are tentative and to be confirmed by IANA.

]

This document (RFCXXXX) is the reference for all registrations
described in this section. The suggested changes are described
below.

8.1. A New Chunk Type
A chunk type has to be assigned by IANA. It is suggested to use the
values given in Table 1. IANA should assign this value from the pool
of chunks with the upper two bits set to '10'.

This requires an additional line in the "Chunk Types" registry for
SCTP:

Chunk Types
ID Value Chunk Type Reference
130 Re-configuration Chunk (RE-CONFIG) [RFCXXXX]

The registration table as defined in [RFC6096] for the chunk flags of
this chunk type is empty.

8.2. Six New Chunk Parameter Types
Six chunk parameter types have to be assigned by IANA. Itis
suggested to use the values given in Table 2. IANA should assign
these values from the pool of parameters with the upper two bits set
to '00'.

This requires six additional lines in the "Chunk Parameter Types"
registry for SCTP:

Stewart, et al. Expires June 10, 2012 [Page 30]

Internet-Draft SCTP Stream Reconfiguration December 2011

Chunk Parameter Types

ID Value Chunk Parameter Type Reference

13 Outgoing SSN Reset Request Parameter [RFCXXXX]
14 Incoming SSN Reset Request Parameter [RFCXXXX]
15 SSN/TSN Reset Request Parameter [RFCXXXX]
16 Re-configuration Response Parameter [RFCXXXX]
17 Add Outgoing Streams Request Parameter [REFCXXXX]
18 Add Incoming Streams Request Parameter [RFCXXXX]

9. Acknowledgments

The authors wish to thank Paul Aitken, Gorry Fairhurst, Tom Petch,
Kacheong Poon, Irene Ruengeler, Robin Seggelmann, Gavin Shearer, and
Vlad Yasevich for there invaluable comments.

10. References
10.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC3758] Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.
Conrad, "Stream Control Transmission Protocol (SCTP)
Partial Reliability Extension”, RFC 3758, May 2004.

[RFC4960] Stewart, R., "Stream Control Transmission Protocol",
RFC 4960, September 2007.

[RFC5061] Stewart, R., Xie, Q., Tuexen, M., Maruyama, S., and M.
Kozuka, "Stream Control Transmission Protocol (SCTP)
Dynamic Address Reconfiguration", RFC 5061,

September 2007.

[RFC6096] Tuexen, M. and R. Stewart, "Stream Control Transmission
Protocol (SCTP) Chunk Flags Registration", RFC 6096,
January 2011.

10.2. Informative References
[I-D.ietf-tsvwg-sctpsocket]
Stewart, R., Tuexen, M., Poon, K., Lei, P., and V.

Yasevich, "Sockets APl Extensions for Stream Control
Transmission Protocol (SCTP)",

Stewart, et al. Expires June 10, 2012 [Page 31]

Internet-Draft SCTP Stream Reconfiguration December 2011

draft-ietf-tsvwg-sctpsocket-32 (work in progress),
October 2011.
Appendix A. Examples of the Re-configuration procedures
Please note that this appendix is informational only.
The following message flows between an Endpoint A and an Endpoint Z
illustrate the described procedures. The time progresses in downward

direction.

The following example illustrates an Endpoint A resetting stream 1
and 2 for just its outgoing streams.

E-A E-Z
---------- [RE-CONFIG(OUT-REQ:X/1,2)]---------->
S [RE-CONFIG(RESP:X)]-----------

The following example illustrates an Endpoint A resetting stream 1
and 2 for just its incoming streams.

E-A E-Z
----------- [RE-CONFIG(IN-REQ:X/1,2)]---------->

S E— [RE-CONFIG(OUT-REQ:Y,X/1,2)]----------
------------- [RE-CONFIG(RESP:Y)]--------meenm->

The following example illustrates an Endpoint A resetting all streams
in both directions.

E-A E-Z
----- [RE-CONFIG(OUT-REQ:X,Y-1|IN-REQ:X+1)]---->
<------[RE-CONFIG(RESP:X|OUT-REQ:Y X+1)]-------
------------- [RE-CONFIG(RESP:Y)]------rme--->

The following example illustrates an Endpoint A requesting the

streams and TSNs be reset. At the completion E-A has the new sending
TSN (selected by the peer) of B and E-Z has the new sending TSN of A
(also selected by the peer).

E-A E-Z
------------ [RE-CONFIG(TSN-REQ:X)]----------->
<-----[RE-CONFIG(RESP:X/S-TSN=A, R-TSN=B)]-----

The following example illustrates an Endpoint A requesting to add 3
additional outgoing streams.

Stewart, et al. Expires June 10, 2012 [Page 32]

Internet-Draft SCTP Stream Reconfiguration

E-A E-Z

-------- [RE-CONFIG(ADD_OUT_STRMS:X/3)]
S [RE-CONFIG(RESP:X)]----------

December 2011

The following example illustrates an Endpoint A requesting to add 3

additional incoming streams.

E-A E-Z

--------- [RE-CONFIG(ADD_IN_STRMS:X/3)]
<----[RE-CONFIG(ADD_OUT_STRMS-REQ:Y,X/3)]
------------- [RE-CONFIG(RESP:Y)]------------

Authors’ Addresses

Randall R. Stewart
Adara Networks
Chapin, SC 29036
USA

Email: randall@lakerest.net

Michael Tuexen

Muenster University of Applied Sciences
Stegerwaldstr. 39

48565 Steinfurt

DE

Email: tuexen@fh-muenster.de

Peter Lei

Cisco Systems, Inc.
8735 West Higgins Road
Suite 300

Chicago, IL 60631

USA

Email: peterlei@cisco.com

Stewart, et al. Expires June 10, 2012

[Page 33]

Network Working Group R. Stewart
Internet-Draft Adara Networks
Intended status: Informational M. Tuexen
Expires: April 13, 2012 Muenster Univ. of Appl. Sciences
K. Poon
Oracle Corporation
P. Lei
Cisco Systems, Inc.
V. Yasevich
HP
October 11, 2011

Sockets API Extensions for Stream Control Transmission Protocol (SCTP)
draft-ietf-tsvwg-sctpsocket-32.txt

Abstract

This document describes a mapping of the Stream Control Transmission
Protocol (SCTP) into a sockets API. The benefits of this mapping
include compatibility for TCP applications, access to new SCTP

features and a consolidated error and event notification scheme.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress.”
This Internet-Draft will expire on April 13, 2012.

Copyright Notice

Copyright (¢) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

Stewart, et al. Expires April 13, 2012 [Page 1]

Internet-Draft SCTP sockets API October 2011

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.

Stewart, et al. Expires April 13, 2012 [Page 2]

Internet-Draft SCTP sockets API October 2011

Table of Contents

1. Introduction 7
2. DataTypes 8
3. One-to-Many Style Interface 8
3.1. BasicOperation..................... 8
3.1.1. socket() ... 10
312. bind() ... 10
313. listen() i 12
3.1.4. sendmsg()andrecvmsg() 12
315.close() . ..o 14
3.16. connect() 15
3.2. Non-blockingmode 16
3.3. Special considerations 17
4. One-to-One Style Interface 18
4.1. BasicOperation..................... 18
411, socket() ... 19
412.bind() 20
413. listen() i 21
4214, accept() ... 21
415 connect() 22
416.close() ... 23
4.1.7. shutdown() 23
4.1.8. sendmsg() andrecvmsg() 24
4.1.9. getpeername() 25
5. Data Structures 25
5.1. The msghdr and cmsghdr Structures 25
5.2. Ancillary Data Considerations and Semantics 26
5.2.1. Multiple Items and Ordering............. 26
5.2.2. Accessing and Manipulating Ancillary Data 27
5.2.3. Control Message Buffer Sizing 27
5.3. SCTP msg_control Structures 28
5.3.1. SCTP Initiation Structure (SCTP_INIT) 29
5.3.2. SCTP Header Information Structure (SCTP_SNDRCV) -
DEPRECATED 30
5.3.3. Extended SCTP Header Information Structure
(SCTP_EXTRCV) - DEPRECATED 33

5.3.4. SCTP Send Information Structure (SCTP_SNDINFO) .

5.3.5. SCTP Receive Information Structure (SCTP_| RCVINFO)

5.3.6. SCTP Next Receive Information Structure
(SCTP_NXTINFO)ot 37

5.3.7. SCTP PR-SCTP Information Structure (SCTP_PRINFO) ..
5.3.8. SCTP AUTH Information Structure (SCTP_AUTHINFO) . ..

5.3.9. SCTP Destination IPv4 Address Structure

(SCTP_DSTADDRV4), 40
5.3.10. SCTP Destination IPv6 Address Structure

(SCTP_DSTADDRVS6) 40

6. SCTP Events and Notifications 40

Stewart, et al. Expires April 13, 2012 [Page 3]

. 34
. 36

39
39

Internet-Draft SCTP sockets API October 2011

6.1. SCTP Notification Structure 41
6.1.1. SCTP_ASSOC CHANGE 43
6.1.2. SCTP_PEER_ADDR_CHANGE 44
6.1.3. SCTP_REMOTE_ERROR 46
6.1.4. SCTP_SEND_FAILED - DEPRECATED 46
6.1.5. SCTP_SHUTDOWN_EVENT 48
6.1.6. SCTP_ADAPTATION_INDICATION 48
6.1.7. SCTP_PARTIAL_DELIVERY_EVENT 49
6.1.8. SCTP_AUTHENTICATION_EVENT 50
6.1.9. SCTP_SENDER_DRY_EVENT 51
6.1.10. SCTP_NOTIFICATIONS_STOPPED_EVENT 51
6.1.11. SCTP_SEND_FAILED_EVENT 52
6.2. Notification Interest Options 53
6.2.1. SCTP_EVENTS option - DEPRECATED 53
6.2.2. SCTP_EVENT o option. 55
7. Common Operations for Both Styles 56
7.1. send(), recv(), sendto(), and recvfrom() 56
7.2. setsockopt() and getsockopt() 58
7.3. read)andwrite() 60
7.4. getsockname() L 60
7.5. Implicit Association Setup 60
8. SocketOptions 61
8.1. Read/Write Options 63
8.1.1. Retransmission Timeout Parameters (SCTP_RTOINFO) .. 63
8.1.2. Association Parameters (SCTP_ASSOCINFO)....... 64
8.1.3. Initialization Parameters (SCTP_INITMSG) 65
8.14. SO LINGER...................... 66
8.1.5. SCTP_NODELAY 66
8.1.6. SO RCVBUF..............ovv.... 67
81.7. SO SNDBUF 67
8.1.8. Automatic Close of Associations (SCTP_AUTOCLOSE) .. 67
8.1.9. Set Primary Address (SCTP_PRIMARY_ADDR) 68
8.1.10. Set Adaptation Layer Indicator
(SCTP_ADAPTATION_LAYER) 68
8.1.11. Enable/Disable Message Fragmentation
(SCTP_DISABLE_FRAGMENTS) 68
8.1.12. Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) ... 69
8.1.13. Set Default Send Parameters
(SCTP_DEFAULT_SEND_PARAM) - DEPRECATED 71
8.1.14. Set Natification and Ancillary Events
(SCTP_EVENTS) - DEPRECATED 72
8.1.15. Set/Clear IPv4 Mapped Addresses
(SCTP_I_WANT_MAPPED V4 ADDR) 72
8.1.16. Get or Set the Maximum Fragmentation Size
(SCTP_MAXSEG)oov i 72
8.1.17. Get or Set the List of Supported HMAC Identifiers
(SCTP_HMAC_IDENT) oo 73
8.1.18. Get or Set the Active Shared Key

Stewart, et al. Expires April 13, 2012 [Page 4]

Internet-Draft SCTP sockets API October 2011

(SCTP_AUTH_ACTIVE_KEY) 73
8.1.19. Get or Set Delayed SACK Timer (SCTP_DELAYED_SACK) .. 74
8.1.20. Get or Set Fragmented Interleave

(SCTP_FRAGMENT_INTERLEAVE) 75
8.1.21. Set or Get the SCTP Partial Delivery Point
(SCTP_PARTIAL_DELIVERY POINT) 76
8.1.22. Set or Get the Use of Extended Receive Info
(SCTP_USE_EXT_RCVINFO) - DEPRECATED 77
8.1.23. Set or Get the Auto ASCONF Flag (SCTP_AUTO_ASCONF) . 77
8.1.24. Set or Get the Maximum Burst (SCTP_MAX_BURST).... 77

8.1.25. Set or Get the Default Context (SCTP_CONTEXT).... 78
8.1.26. Enable or Disable Explicit EOR Marking

(SCTP_EXPLICIT EOR) 78
8.1.27. Enable SCTP Port Reusage (SCTP_REUSE_PORT) 79
8.1.28. Set Notification Event (SCTP_EVENT) 79
8.1.29. Enable or Disable the Delivery of SCTP_RCVINFO as
Ancillary Data (SCTP_RECVRCVINFO) 79
8.1.30. Enable or Disable the Delivery of SCTP_NXTINFO as
Ancillary Data (SCTP_RECVNXTINFO) 79

8.1.31. Set Default Send Parameters (SCTP_DEFAULT_SNDINFO) . 80
8.1.32. Set Default PR-SCTP Parameters
(SCTP_DEFAULT_PRINFO) 80
8.2. Read-OnlyOptions 80
8.2.1. Association Status (SCTP_STATUS) 80
8.2.2. Peer Address Information (SCTP_GET_PEER_ADDR_INFO) . 82
8.2.3. Get the List of Chunks the Peer Requires to be

Authenticated (SCTP_PEER_AUTH_CHUNKS) 83
8.2.4. Get the List of Chunks the Local Endpoint Requires
to be Authenticated (SCTP_LOCAL_AUTH_CHUNKS) 84
8.2.5. Get the Current Number of Associations
(SCTP_GET_ASSOC_NUMBER) 84
8.2.6. Get the Current Identifiers of Associations
(SCTP_GET _ASSOC_ID_LIST)cvo... 85
8.3. Write-Only Options 85
8.3.1. Set Peer Primary Address
(SCTP_SET _PEER_PRIMARY_ADDR) 85
8.3.2. Add a Chunk that must be Authenticated
(SCTP_AUTH_CHUNK) 86
8.3.3. Seta Shared Key (SCTP_AUTH_KEY) 86
8.3.4. Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY) . 87
8.3.5. Delete a Shared Key (SCTP_AUTH_DELETE_KEY) 87
9. NewFunctions 88
9.1. sctp_bindx() L. 88
9.2. sctp_peeloff() L. 90
9.3. sctp_getpaddrs() 90
9.4. sctp_freepaddrs() 91
9.5. sctp_getladdrs() 91
9.6. sctp_freeladdrs() 92

Stewart, et al. Expires April 13, 2012 [Page 5]

Internet-Draft SCTP sockets API October 2011

9.7. sctp_sendmsg() - DEPRECATED 92
9.8. sctp_recvmsg() - DEPRECATED 93
9.9. sctp_connectx()o 94
9.10. sctp_send() - DEPRECATED 95
9.11. sctp_sendx() - DEPRECATED 96
9.12.sctp_sendv() 97
9.13.sctp_recw() 100

10. IANA Considerations 102

11. Security Considerations 102

12. Acknowledgments 103

13. References 103
13.1. Normative References 103
13.2. Informative References 104

Appendix A. One-to-One Style Code Example 104

Appendix B. One-to-Many Style Code Example
Authors’ Addresses 112

Stewart, et al. Expires April 13, 2012 [Page 6]

Internet-Draft SCTP sockets API October 2011

1. Introduction

The sockets API has provided a standard mapping of the Internet

Protocol suite to many operating systems. Both TCP [RFC0793] and UDP
[RFCO768] have benefited from this standard representation and access
method across many diverse platforms. SCTP is a new protocol that
provides many of the characteristics of TCP but also incorporates
semantics more akin to UDP. This document defines a method to map
the existing sockets API for use with SCTP, providing both a base for
access to new features and compatibility so that most existing TCP
applications can be migrated to SCTP with few (if any) changes.

There are three basic design objectives:

1. Maintain consistency with existing sockets APIs: We define a
sockets mapping for SCTP that is consistent with other sockets
API protocol mappings (for instance UDP, TCP, IPv4, and IPv6).

2. Support a one-to-many style interface: This set of semantics is
similar to that defined for connection-less protocols, such as
UDP. A one-to-many style SCTP socket should be able to control
multiple SCTP associations. This is similar to a UDP socket,
which can communicate with many peer endpoints. Each of these
associations is assigned an association identifier so that an
application can use the ID to differentiate them. Note that SCTP
is connection-oriented in nature, and it does not support
broadcast or multicast communications, as UDP does.

3. Support a one-to-one style interface: This interface supports a
similar semantics as sockets for connection-oriented protocols,
such as TCP. A one-to-one style SCTP socket should only control
one SCTP association. One purpose of defining this interface is
to allow existing applications built on other connection-oriented
protocols to be ported to use SCTP with very little effort.
Developers familiar with these semantics can easily adapt to
SCTP. Another purpose is to make sure that existing mechanisms
in most operating systems that support sockets, such as select(),
should continue to work with this style of socket. Extensions
are added to this mapping to provide mechanisms to exploit new
features of SCTP.

Goals 2 and 3 are not compatible, so this document defines two modes

of mapping, namely the one-to-many style mapping and the one-to-one
style mapping. These two modes share some common data structures and
operations, but will require the use of two different application

programming styles. Note that all new SCTP features can be used with
both styles of socket. The decision on which one to use depends

mainly on the nature of applications.

Stewart, et al. Expires April 13, 2012 [Page 7]

Internet-Draft SCTP sockets API October 2011

A mechanism is defined to extract a one-to-many style SCTP
association into a one-to-one style socket.

Some of the SCTP mechanisms cannot be adequately mapped to an
existing socket interface. In some cases, it is more desirable to
have a new interface instead of using existing socket calls.

Section 9 of this document describes these new interfaces.

Please note that some elements of the SCTP socket API are declared as
deprecated. During the evolution of this document, elements of the

API were introduced, implemented and later on replaced by other
elements. These replaced elements are declared as deprecated since
they are still available in some implementations and the replacement
functions are not. This applies especially to older versions of

operating systems supporting SCTP. New SCTP socket implementations
must implement at least the non deprecated elements. Implementations
intending interoperability with older versions of the API should also
include the deprecated functions.

2. Data Types
Whenever possible, POSIX data types defined in [I[EEE-1003.1-2008] are
used: uintN_t means an unsigned integer of exactly N bits (e.qg.
uintl6_t). This document also assumes the argument data types from
POSIX when possible (e.g. the final argument to setsockopt() is a
socklen_t value). Whenever buffer sizes are specified, the POSIX
size_t data type is used.

3. One-to-Many Style Interface

In the one-to-many style interface there is a 1 to many relationship
between sockets and associations.

3.1. Basic Operation

A typical server in this style uses the following socket calls in
sequence to prepare an endpoint for servicing requests:

0 socket()
o bind()
o listen()

o recvmsg()

Stewart, et al. Expires April 13, 2012 [Page 8]

Internet-Draft SCTP sockets API October 2011

o sendmsg()
0 close()

A typical client uses the following calls in sequence to setup an
association with a server to request services:

0 socket()
o sendmsg()
o recvmsg()
0 close()

In this style, by default, all the associations connected to the
endpoint are represented with a single socket. Each association is
assigned an association identifier (type is sctp_assoc_t) so that an
application can use it to differentiate among them. In some
implementations, the peer endpoints’ addresses can also be used for
this purpose. But this is not required for performance reasons. If
an implementation does not support using addresses to differentiate
between different associations, the sendto() call can only be used to
setup an association implicitly. It cannot be used to send data to

an established association as the association identifier cannot be
specified.

Once an association identifier is assigned to an SCTP association,
that identifier will not be reused until the application explicitly
terminates the use of the association. The resources belonging to
that association will not be freed until that happens. This is
similar to the close() operation on a normal socket. The only
exception is when the SCTP_AUTOCLOSE option (Section 8.1.8) is set.
In this case, after the association is terminated gracefully and
automatically, the association identifier assigned to it can be
reused. All applications using this option should be aware of this
to avoid the possible problem of sending data to an incorrect peer
endpoint.

If the server or client wishes to branch an existing association off

to a separate socket, it is required to call sctp_peeloff() and to

specify the association identifier. The sctp_peeloff() call will

return a new one-to-one style socket which can then be used with
recv() and send() functions for message passing. See Section 9.2 for
more on branched-off associations.

Once an association is branched off to a separate socket, it becomes
completely separated from the original socket. All subsequent

Stewart, et al. Expires April 13, 2012 [Page 9]

Internet-Draft SCTP sockets API October 2011

control and data operations to that association must be done through
the new socket. For example, the close operation on the original
socket will not terminate any associations that have been branched
off to a different socket.

One-to-many style socket calls are discussed in more detail in the
following subsections.

3.1.1. socket()

Applications use socket() to create a socket descriptor to represent
an SCTP endpoint.

The function prototype is

int socket(int domain,
int type,
int protocol);

and one uses PF_INET or PF_INET6 as the domain, SOCK_SEQPACKET as the
type and IPPROTO_SCTP as the protocol.

Here, SOCK_SEQPACKET indicates the creation of a one-to-many style
socket.

The function returns a socket descriptor or -1 in case of an error.

Using the PF_INET domain indicates the creation of an endpoint which
can use only IPv4 addresses, while PF_INET6 creates an endpoint which
can use both IPv6 and IPv4 addresses.

3.1.2. bind()

Applications use bind() to specify which local address and port the
SCTP endpoint should associate itself with.

An SCTP endpoint can be associated with multiple addresses. To do
this, sctp_bindx() is introduced in Section 9.1 to help applications

do the job of associating multiple addresses. But note that an
endpoint can only be associated with one local port.

These addresses associated with a socket are the eligible transport
addresses for the endpoint to send and receive data. The endpoint
will also present these addresses to its peers during the association
initialization process, see [RFC4960].

After calling bind(), if the endpoint wishes to accept new
associations on the socket, it must call listen() (see

Stewart, et al. Expires April 13, 2012 [Page 10]

Internet-Draft SCTP sockets API October 2011

Section 3.1.3).
The function prototype of bind() is

int bind(int sd,
struct sockaddr *addr,
socklen_t addrlen);

and the arguments are
sd: The socket descriptor returned by socket().

addr: The address structure (struct sockaddr_in for an IPv4 address
or struct sockaddr_in6 for an IPv6 address, see [RFC3493]).

addrlen: The size of the address structure.
It returns 0 on success and -1 in case of an error.

If sd is an IPv4 socket, the address passed must be an IPv4 address.
If the sd is an IPv6 socket, the address passed can either be an IPv4
or an IPv6 address.

Applications cannot call bind() multiple times to associate multiple
addresses to an endpoint. After the first call to bind(), all
subsequent calls will return an error.

If the IP address part of addr is specified as a wildcard (INADDR_ANY
for an IPv4 address, or as INGADDR_ANY _INIT or in6addr_any for an
IPv6 address), the operating system will associate the endpoint with
an optimal address set of the available interfaces. If the IPv4

sin_port or IPv6 sin6_port is set to 0, the operating system will

choose an ephemeral port for the endpoint.

If a bind() is not called prior to a sendmsg() call that initiates a

new association, the system picks an ephemeral port and will choose
an address set equivalent to binding with a wildcard address. One of
those addresses will be the primary address for the association.

This automatically enables the multi-homing capability of SCTP.

The completion of this bind() process does not allow the SCTP
endpoint to accept inbound SCTP association requests. Until a
listen() system call, described below, is performed on the socket,

the SCTP endpoint will promptly reject an inbound SCTP INIT request
with an SCTP ABORT.

Stewart, et al. Expires April 13, 2012 [Page 11]

Internet-Draft SCTP sockets API October 2011

3.1.3. listen()

By default, a one-to-many style socket does not accept new
association requests. An application uses listen() to mark a socket
as being able to accept new associations.

The function prototype is

int listen(int sd,
int backlog);

and the arguments are
sd: The socket descriptor of the endpoint.

backlog: If backlog is non-zero, enable listening, else disable
listening.

It returns 0 on success and -1 in case of an error.

Note that one-to-many style socket consumers do not need to call
accept to retrieve new associations. Calling accept() on a one-to-
many style socket should return EOPNOTSUPP. Rather, new associations
are accepted automatically, and notifications of the new associations
are delivered via recvmsg() with the SCTP_ASSOC_CHANGE event (if
these notifications are enabled). Clients will typically not call

listen(), so that they can be assured that only actively initiated
associations are possible on the socket. Server or peer-to-peer
sockets, on the other hand, will always accept new associations, so a
well-written application using server one-to-many style sockets must
be prepared to handle new associations from unwanted peers.

Also note that the SCTP_ASSOC_CHANGE event provides the association
identifier for a new association, so if applications wish to use the
association identifier as a parameter to other socket calls, they
should ensure that the SCTP_ASSOC_CHANGE event is enabled.

3.1.4. sendmsg() and recvmsg()

An application uses the sendmsg() and recvmsg() call to transmit data
to and receive data from its peer.

The function prototypes are
ssize_t sendmsg(int sd,

const struct msghdr *message,
int flags);

Stewart, et al. Expires April 13, 2012 [Page 12]

Internet-Draft SCTP sockets API October 2011

and

ssize_t recvmsg(int sd,
struct msghdr *message,
int flags);

using the arguments:
sd: The socket descriptor of the endpoint.

message: Pointer to the msghdr structure which contains a single
user message and possibly some ancillary data. See Section 5 for
complete description of the data structures.

flags: No new flags are defined for SCTP at this level. See
Section 5 for SCTP specific flags used in the msghdr structure.

sendmsg() returns the number of bytes accepted by the kernel or -1 in
case of an error. recvmsg() returns the number of bytes received or
-1in case of an error.

As described in Section 5, different types of ancillary data can be

sent and received along with user data. When sending, the ancillary
data is used to specify the sent behavior, such as the SCTP stream
number to use. When receiving, the ancillary data is used to

describe the received data, such as the SCTP stream sequence number
of the message.

When sending user data with sendmsg(), the msg_name field in the
msghdr structure will be filled with one of the transport addresses

of the intended receiver. If there is no existing association

between the sender and the intended receiver, the sender’'s SCTP stack
will set up a new association and then send the user data (see

Section 7.5 for more on implicit association setup). If sendmsg() is
called with no data and there is no existing association, a new one

will be established. The SCTP_INIT type ancillary data can be used

to change some of the parameters used to set up a new association.

If sendmsg() is called with NULL data, and there is no existing
association but the SCTP_ABORT or SCTP_EOF flags are set as described
in Section 5.3.4, then -1 is returned and errno is set to EINVAL.

Sending a message using sendmsg() is atomic unless explicit EOR
marking is enabled on the socket specified by sd (see

Section 8.1.26).

If a peer sends a SHUTDOWN, an SCTP_SHUTDOWN_EVENT notification will
be delivered if that notification has been enabled, and no more data

can be sent to that association. Any attempt to send more data will

cause sendmsg() to return with an ESHUTDOWN error. Note that the

Stewart, et al. Expires April 13, 2012 [Page 13]

Internet-Draft SCTP sockets API October 2011

socket is still open for reading at this point so it is possible to
retrieve notifications.

When receiving a user message with recvmsg(), the msg_name field in
the msghdr structure will be populated with the source transport

address of the user data. The caller of recvmsg() can use this

address information to determine to which association the received

user message belongs. Note that if SCTP_ASSOC_CHANGE events are
disabled, applications must use the peer transport address provided

in the msg_name field by recvmsg() to perform correlation to an
association, since they will not have the association identifier.

If all data in a single message has been delivered, MSG_EOR will be
set in the msg_flags field of the msghdr structure (see Section 5.1).

If the application does not provide enough buffer space to completely
receive a data message, MSG_EOR will not be set in msg_flags.
Successive reads will consume more of the same message until the
entire message has been delivered, and MSG_EOR will be set.

If the SCTP stack is running low on buffers, it may partially deliver

a message. In this case, MSG_EOR will not be set, and more calls to
recvmsg() will be necessary to completely consume the message. Only

one message at a time can be partially delivered in any stream. The

socket option SCTP_FRAGMENT_INTERLEAVE controls various aspects of
what interlacing of messages occurs for both the one-to-one and the
one-to-many model sockets. Please consult Section 8.1.20 for further
details on message delivery options.

3.1.5. close()
Applications use close() to perform graceful shutdown (as described
in Section 10.1 of [RFC4960]) on all the associations currently
represented by a one-to-many style socket.
The function prototype is
int close(int sd);
and the argument is
sd: The socket descriptor of the associations to be closed.
0 is returned on success and -1 in case of an error.
To gracefully shutdown a specific association represented by the one-

to-many style socket, an application should use the sendmsg() call,
and include the SCTP_EOF flag. A user may optionally terminate an

Stewart, et al. Expires April 13, 2012 [Page 14]

Internet-Draft SCTP sockets API October 2011

association non-gracefully by sending with the SCTP_ABORT flag set
and possibly passing a user specified abort code in the data field.

Both flags SCTP_EOF and SCTP_ABORT are passed with ancillary data
(see Section 5.3.4) in the sendmsg() call.

If sd in the close() call is a branched-off socket representing only
one association, the shutdown is performed on that association only.

3.1.6. connect()

An application may use the connect() call in the one-to-many style to
initiate an association without sending data.

The function prototype is

int connect(int sd,
const struct sockaddr *nam,
socklen_t len);

and the arguments are
sd: The socket descriptor to have a new association added to.

nam: The address structure (struct sockaddr_in for an IPv4 address
or struct sockaddr_in6 for an IPv6 address, see [RFC3493]).

len: The size of the address.
0 is returned on success and -1 in case of an error.

Multiple connect() calls can be made on the same socket to create
multiple associations. This is different from the semantics of
connect() on a UDP socket.

Note that SCTP allows data exchange, similar to T/TCP [RFC1644],
during the association set up phase. If an application wants to do

this, it cannot use the connect() call. Instead, it should use

sendto() or sendmsg() to initiate an association. If it uses

sendto() and it wants to change the initialization behavior, it needs

to use the SCTP_INITMSG socket option before calling sendto(). Or it
can use sendmsg() with SCTP_INIT type ancillary data to initiate an
association without calling setsockopt(). Note that the implicit

setup is supported for the one-to-many style sockets.

SCTP does not support half close semantics. This means that unlike
T/TCP, MSG_EOF should not be set in the flags parameter when calling
sendto() or sendmsg() when the call is used to initiate a connection.
MSG_EOF is not an acceptable flag with an SCTP socket.

Stewart, et al. Expires April 13, 2012 [Page 15]

Internet-Draft SCTP sockets API October 2011

3.2. Non-blocking mode

Some SCTP application may wish to avoid being blocked when calling a
socket interface function.

Once a bind() and/or subsequent sctp_bindx() calls are complete on a
one-to-many style socket, an application may set the non-blocking

option by a fentl() (such as O_NONBLOCK). After setting the socket

to non-blocking mode, the sendmsg() function returns immediately.

The success or failure of sending the data message (with possible
SCTP_INITMSG ancillary data) will be signaled by the
SCTP_ASSOC_CHANGE event with SCTP_COMM_UP or SCTP_CANT_START_ASSOC.
If user data could not be sent (due to a SCTP_CANT_START_ASSOC), the
sender will also receive an SCTP_SEND_FAILED EVENT event. Events can
be received by the user calling recvmsg(). A server (having called

listen()) is also notified of an association up event by the

reception of an SCTP_ASSOC_CHANGE with SCTP_COMM_UP via the calling
of recvmsg() and possibly the reception of the first data message.

To shutdown the association gracefully, the user must call sendmsg()
with no data and with the SCTP_EOF flag set as described in

Section 5.3.4. The function returns immediately, and completion of

the graceful shutdown is indicated by an SCTP_ASSOC_CHANGE
notification of type SHUTDOWN_COMPLETE (see Section 6.1.1). Note
that this can also be done using the sctp_sendv() call described in
Section 9.12.

An application is recommended to use caution when using select() (or
poll()) for writing on a one-to-many style socket. The reason being
that the interpretation of select on write is implementation

specific. Generally a positive return on a select on write would

only indicate that one of the associations represented by the one-to-
many socket is writable. An application that writes after the

select() returns may still block since the association that was
writeable is not the destination association of the write call.

Likewise select() (or poll()) for reading from a one-to-many socket
will only return an indication that one of the associations
represented by the socket has data to be read.

An application that wishes to know that a particular association is
ready for reading or writing should either use the one-to-one style
or use the sctp_peeloff() (see Section 9.2) function to separate the
association of interest from the one-to-many socket.

Note some implementations may have an extended select call such as
epoll or kqueue that may escape this limitation and allow a select on

a specific association of a one-to-many socket, but this is an
implementation specific detail that a portable application cannot

Stewart, et al. Expires April 13, 2012 [Page 16]

Internet-Draft SCTP sockets API October 2011

depend on.
3.3. Special considerations

The fact that a one-to-many style socket can provide access to many
SCTP associations through a single socket descriptor, has important
implications for both application programmers and system programmers
implementing this API. A key issue is how buffer space inside the
sockets layer is managed. Because this implementation detail

directly affects how application programmers must write their code to
ensure correct operation and portability, this section provides some
guidance to both implementers and application programmers.

An important feature that SCTP shares with TCP is flow control.
Specifically, a sender may not send data faster than the receiver can
consume it.

For TCP, flow control is typically provided for in the sockets API as
follows. If the reader stops reading, the sender queues messages in

the socket layer until the send socket buffer is completely filled.

This results in a "stalled connection”. Further attempts to write to

the socket will block or return the error EAGAIN or EWOULDBLOCK for a
non-blocking socket. At some point, either the connection is closed,

or the receiver begins to read again freeing space in the output

gueue.

For one-to-one style SCTP sockets (this includes sockets descriptors
that were separated from a one-to-many style socket with
sctp_peeloff()) the behavior is identical. For one-to-many style
SCTP sockets there are multiple associations for a single socket,
which makes the situation more complicated. If the implementation
uses a single buffer space allocation shared by all associations, a
single stalled association can prevent the further sending of data on
all associations active on a particular one-to-many style socket.

For a blocking socket, it should be clear that a single stalled
association can block the entire socket. For this reason,

application programmers may want to use non-blocking one-to-many
style sockets. The application should at least be able to send
messages to the non-stalled associations.

But a non-blocking socket is not sufficient if the APl implementer
has chosen a single shared buffer allocation for the socket. A
single stalled association would eventually cause the shared
allocation to fill, and it would become impossible to send even to
non-stalled associations.

The API implementer can solve this problem by providing each

Stewart, et al. Expires April 13, 2012 [Page 17]

Internet-Draft SCTP sockets API October 2011

association with its own allocation of outbound buffer space. Each
association should conceptually have as much buffer space as it would
have if it had its own socket. As a bonus, this simplifies the
implementation of sctp_peeloff().

To ensure that a given stalled association will not prevent other
non-stalled associations from being writable, application programmers
should either:

o demand that the underlying implementation dedicates independent
buffer space reservation to each association (as suggested above),
or

o verify that their application layer protocol does not permit large
amounts of unread data at the receiver (this is true of some
request-response protocols, for example), or

0 use one-to-one style sockets for association which may potentially

stall (either from the beginning, or by using sctp_peeloff before
sending large amounts of data that may cause a stalled condition).

4. One-to-One Style Interface
The goal of this style is to follow as closely as possible the
current practice of using the sockets interface for a connection
oriented protocol, such as TCP. This style enables existing
applications using connection oriented protocols to be ported to SCTP
with very little effort.

One-to-one style sockets can be connected (explicitly or implicitly)
at most once, similar to TCP sockets.

Note that some new SCTP features and some new SCTP socket options can
only be utilized through the use of sendmsg() and recvmsg() calls,
see Section 4.1.8.

4.1. Basic Operation

A typical server in one-to-one style uses the following system call
sequence to prepare an SCTP endpoint for servicing requests:

0 socket()
o bind()

o listen()

Stewart, et al. Expires April 13, 2012 [Page 18]

Internet-Draft SCTP sockets API October 2011

o accept()

The accept() call blocks until a new association is set up. It

returns with a new socket descriptor. The server then uses the new
socket descriptor to communicate with the client, using recv() and
send() calls to get requests and send back responses.

Then it calls

0 close()

to terminate the association.

A typical client uses the following system call sequence to setup an
association with a server to request services:

0 socket()

0 connect()

After returning from connect(), the client uses send()/sendmsg() and
recv()/recvmsg() calls to send out requests and receive responses
from the server.

The client calls

0 close()

to terminate this association when done.

4.1.1. socket()

Applications call socket() to create a socket descriptor to represent
an SCTP endpoint.

The function prototype is
int socket(int domain,

int type,

int protocol);

and one uses PF_INET or PF_INET6 as the domain, SOCK_STREAM as the
type and IPPROTO_SCTP as the protocol.

Here, SOCK_STREAM indicates the creation of a one-to-one style
socket.

Using the PF_INET domain indicates the creation of an endpoint which

Stewart, et al. Expires April 13, 2012 [Page 19]

Internet-Draft SCTP sockets API October 2011

can use only IPv4 addresses, while PF_INET6 creates an endpoint which
can use both IPv6 and IPv4 addresses.

4.1.2. bind()

Applications use bind() to specify which local address and port the
SCTP endpoint should associate itself with.

An SCTP endpoint can be associated with multiple addresses. To do
this, sctp_bindx() is introduced in Section 9.1 to help applications

do the job of associating multiple addresses. But note that an
endpoint can only be associated with one local port.

These addresses associated with a socket are the eligible transport
addresses for the endpoint to send and receive data. The endpoint
will also present these addresses to its peers during the association
initialization process, see [RFC4960].

The function prototype of bind() is

int bind(int sd,
struct sockaddr *addr,
socklen_t addrlen);

and the arguments are
sd: The socket descriptor returned by socket().

addr: The address structure (struct sockaddr_in for an IPv4 address
or struct sockaddr_in6 for an IPv6 address, see [RFC3493])).

addrlen: The size of the address structure.

If sd is an IPv4 socket, the address passed must be an IPv4 address.
If sd is an IPv6 socket, the address passed can either be an IPv4 or
an IPv6 address.

Applications cannot call bind() multiple times to associate multiple
addresses to the endpoint. After the first call to bind(), all
subsequent calls will return an error.

If the IP address part of addr is specified as a wildcard (INADDR_ANY
for an IPv4 address, or as INGADDR_ANY _INIT or in6addr_any for an
IPv6 address), the operating system will associate the endpoint with
an optimal address set of the available interfaces. If the IPv4

sin_port or IPv6 sin6_port is set to 0, the operating system will

choose an ephemeral port for the endpoint.

Stewart, et al. Expires April 13, 2012 [Page 20]

Internet-Draft SCTP sockets API October 2011

If a bind() is not called prior to the connect() call, the system

picks an ephemeral port and will choose an address set equivalent to
binding with a wildcard address. One of these addresses will be the
primary address for the association. This automatically enables the
multi-homing capability of SCTP.

The completion of this bind() process does not allow the SCTP
endpoint to accept inbound SCTP association requests. Until a
listen() system call, described below, is performed on the socket,

the SCTP endpoint will promptly reject an inbound SCTP INIT request
with an SCTP ABORT.

4.1.3. listen()

Applications use listen() to allow the SCTP endpoint to accept
inbound associations.

The function prototype is

int listen(int sd,
int backlog);

and the arguments are
sd: the socket descriptor of the SCTP endpoint.

backlog: this specifies the max number of outstanding associations
allowed in the socket's accept queue. These are the associations
that have finished the four-way initiation handshake (see Section
5 of [RFC4960]) and are in the ESTABLISHED state. Note, a backlog
of '0’ indicates that the caller no longer wishes to receive new
associations.

It returns O on success an -1 in case of an error.

4.1.4. accept()
Applications use the accept() call to remove an established SCTP
association from the accept queue of the endpoint. A new socket
descriptor will be returned from accept() to represent the newly
formed association.
The function prototype is
int accept(int sd,

struct sockaddr *addr,
socklen_t *addrlen);

Stewart, et al. Expires April 13, 2012 [Page 21]

Internet-Draft SCTP sockets API October 2011

and the arguments are

sd: The listening socket descriptor.

addr: On return, addr (struct sockaddr_in for an IPv4 address or
struct sockaddr_in6 for an IPv6 address, see [RFC3493]) will
contain the primary address of the peer endpoint.

addrlen: On return, addrlen will contain the size of addr.

The function returns the socket descriptor for the newly formed
association on success and -1 in case of an error.

4.1.5. connect()
Applications use connect() to initiate an association to a peer.
The function prototype is
int connect(int sd,
const struct sockaddr *addr,
socklen_t addrlen);
and the arguments are

sd: The socket descriptor of the endpoint.

addr: The peer’s (struct sockaddr_in for an IPv4 address or struct
sockaddr_in6 for an IPv6 address, see [RFC3493]) address.

addrlen: The size of the address.
It returns 0 on success and -1 on error.

This operation corresponds to the ASSOCIATE primitive described in
Section 10.1 of [RFC4960].

The number of outbound streams the new association has is stack
dependent. Applications can use the SCTP_INITMSG option described in
Section 8.1.3 before connecting to change the number of outbound
streams.

If a bind() is not called prior to the connect() call, the system

picks an ephemeral port and will choose an address set equivalent to

binding with INADDR_ANY and INGADDR_ANY _INIT for IPv4 and IPv6 socket
respectively. One of the addresses will be the primary address for

the association. This automatically enables the multi-homing

capability of SCTP.

Stewart, et al. Expires April 13, 2012 [Page 22]

Internet-Draft SCTP sockets API October 2011

Note that SCTP allows data exchange, similar to T/TCP [RFC1644],
during the association set up phase. If an application wants to do

this, it cannot use the connect() call. Instead, it should use

sendto() or sendmsg() to initiate an association. If it uses

sendto() and it wants to change the initialization behavior, it needs

to use the SCTP_INITMSG socket option before calling sendto(). Or it
can use sendmsg() with SCTP_INIT type ancillary data to initiate an
association without calling setsockopt(). Note that the implicit

setup is supported for the one-to-one style sockets.

SCTP does not support half close semantics. This means that unlike
T/TCP, MSG_EOF should not be set in the flags parameter when calling
sendto() or sendmsg() when the call is used to initiate a connection.
MSG_EOF is not an acceptable flag with an SCTP socket.

4.1.6. close()
Applications use close() to gracefully close down an association.
The function prototype is
int close(int sd);
and the argument is
sd: The socket descriptor of the association to be closed.

It returns 0 on success and -1 in case of an error.

After an application calls close() on a socket descriptor, no further
socket operations will succeed on that descriptor.

4.1.7. shutdown()

SCTP differs from TCP in that it does not have half closed semantics.
Hence the shutdown() call for SCTP is an approximation of the TCP
shutdown() call, and solves some different problems. Full TCP-
compatibility is not provided, so developers porting TCP applications
to SCTP may need to recode sections that use shutdown(). (Note that
it is possible to achieve the same results as half close in SCTP

using SCTP streams.)

The function prototype is

int shutdown(int sd,
int how);

and the arguments are

Stewart, et al. Expires April 13, 2012 [Page 23]

Internet-Draft SCTP sockets API October 2011

sd: The socket descriptor of the association to be closed.
how: Specifies the type of shutdown. The values are as follows:

SHUT_RD: Disables further receive operations. No SCTP protocol
action is taken.

SHUT_WR: Disables further send operations, and initiates the SCTP
shutdown sequence.

SHUT_RDWR: Disables further send and receive operations and
initiates the SCTP shutdown sequence.

It returns O on success and -1 in case of an error.

The major difference between SCTP and TCP shutdown() is that SCTP
SHUT_WR initiates immediate and full protocol shutdown, whereas TCP
SHUT_WR causes TCP to go into the half closed state. SHUT_RD behaves
the same for SCTP as TCP. The purpose of SCTP SHUT_WR is to close
the SCTP association while still leaving the socket descriptor open.

This allows the caller to receive back any data which SCTP is unable

to deliver (see Section 6.1.4 for more information) and receive event
notifications.

To perform the ABORT operation described in [RFC4960] Section 10.1,
an application can use the socket option SO_LINGER. It is described
in Section 8.1.4.

4.1.8. sendmsg() and recvmsg()

With a one-to-one style socket, the application can also use
sendmsg() and recvmsg() to transmit data to and receive data from its
peer. The semantics is similar to those used in the one-to-many

style (see Section 3.1.4), with the following differences:

1. When sending, the msg_name field in the msghdr is not used to
specify the intended receiver, rather it is used to indicate a
preferred peer address if the sender wishes to discourage the
stack from sending the message to the primary address of the
receiver. If the socket is connected and the transport address
given is not part of the current association, the data will not
be sent and an SCTP_SEND_FAILED_EVENT event will be delivered to
the application if send failure events are enabled.

2. Using sendmsg() on a non-connected one-to-one style socket for

implicit connection setup may or may not work depending on the
SCTP implementation.

Stewart, et al. Expires April 13, 2012 [Page 24]

Internet-Draft SCTP sockets API October 2011

4.1.9. getpeername()

Applications use getpeername() to retrieve the primary socket address
of the peer. This call is for TCP compatibility, and is not multi-

homed. It may not work with one-to-many style sockets depending on
the implementation. See Section 9.3 for a multi-homed style version
of the call.

The function prototype is
int getpeername(int sd,
struct sockaddr *address,
socklen_t *len);
and the arguments are:
sd: The socket descriptor to be queried.
address: On return, the peer primary address is stored in this
buffer. If the socket is an IPv4 socket, the address will be
IPv4. If the socket is an IPv6 socket, the address will be either
an IPv6 or IPv4 address.

len: The caller should set the length of address here. On return,
this is set to the length of the returned address.

It returns O on success and -1 in case of an error.
If the actual length of the address is greater than the length of the
supplied sockaddr structure, the stored address will be truncated.

5. Data Structures
This section discusses important data structures which are specific
to SCTP and are used with sendmsg() and recvmsg() calls to control
SCTP endpoint operations and to access ancillary information and
notifications.

5.1. The msghdr and cmsghdr Structures
The msghdr structure used in the sendmsg() and recvmsg() calls, as
well as the ancillary data carried in the structure, is the key for
the application to set and get various control information from the

SCTP endpoint.

The msghdr and the related cmsghdr structures are defined and
discussed in detail in [RFC3542]. They are defined as:

Stewart, et al. Expires April 13, 2012 [Page 25]

Internet-Draft SCTP sockets API October 2011

struct msghdr {
void *msg_name; [* ptr to socket address structure */
socklen_t msg_namelen; /* size of socket address structure */
struct iovec *msg_iov; /* scatter/gather array */

int msg_iovlen; [* # elements in msg_iov */

void *msg_control; [* ancillary data */

socklen_t msg_controllen; /* ancillary data buffer length */
int msg_flags; * flags on received message */

h

struct cmsghdr {
socklen_t cmsg_len; /* #bytes, including this header */
int cmsg_level; /* originating protocol */
int cmsg_type; /* protocol-specific type */
/* followed by unsigned char cmsg_datal[]; */
%

In the msghdr structure, the usage of msg_name has been discussed in
previous sections (see Section 3.1.4 and Section 4.1.8).

The scatter/gather buffers, or I/O vectors (pointed to by the msg_iov
field) are treated by SCTP as a single user message for both
sendmsg() and recvmsg().

SCTP stack uses the ancillary data (msg_control field) to communicate
the attributes, such as SCTP_RCVINFO, of the message stored in
msg_iov to the socket end point. The different ancillary data types

are described in Section 5.3.

The msg_flags are not used when sending a message with sendmsg().
If a notification has arrived, recvmsg() will return the notification

in msg_iov field and set MSG_NOTIFICATION flag in msg_flags. If the
MSG_NOTIFICATION flag is not set, recvmsg() will return data. See
Section 6 for more information about notifications.

If all portions of a data frame or notification have been read,
recvmsg() will return with MSG_EOR set in msg_flags.

5.2. Ancillary Data Considerations and Semantics

Programming with ancillary socket data (msg_control) contains some
subtleties and pitfalls, which are discussed below.

5.2.1. Multiple Items and Ordering

Multiple ancillary data items may be included in any call to
sendmsg() or recvmsg(); these may include multiple SCTP or non-SCTP,

Stewart, et al. Expires April 13, 2012 [Page 26]

Internet-Draft SCTP sockets API October 2011

such as IP level items, or both.

The ordering of ancillary data items (either by SCTP or another
protocol) is not significant and is implementation-dependent, so
applications must not depend on any ordering.

SCTP_SNDRCV/SCTP_SNDINFO/SCTP_RCVINFO type ancillary data always
correspond to the data in the msghdr's msg_iov member. There can be

only one single such type ancillary data for each sendmsg() or

recvmsg() call.

5.2.2. Accessing and Manipulating Ancillary Data

Applications can infer the presence of data or ancillary data by
examining the msg_iovlen and msg_controllen msghdr members,
respectively.

Implementations may have different padding requirements for ancillary

data, so portable applications should make use of the macros

CMSG_FIRSTHDR, CMSG_NXTHDR, CMSG_DATA, CMSG_SPACE, and CMSG_LEN. See
[RFC3542] and the SCTP implementation’s documentation for more

information. The following is an example, from [RFC3542],

demonstrating the use of these macros to access ancillary data:

struct msghdr msg;
struct cmsghdr *cmsgptr;

/*fill in msg */
/* call recvmsg() */

for (cmsgptr = CMSG_FIRSTHDR(&msQ); cmsgptr '= NULL;
cmsgptr = CMSG_NXTHDR(&msg, cmsgptr)) {
if (cmsgptr->cmsg_level == ... && cmsgptr->cmsg_type ==...) {
u_char *ptr;

ptr = CMSG_DATA(cmsgptr);
[* process data pointed to by ptr */

}
}

5.2.3. Control Message Buffer Sizing

The information conveyed via SCTP_SNDRCV/SCTP_SNDINFO/SCTP_RCVINFO
ancillary data will often be fundamental to the correct and sane

operation of the sockets application. This is particularly true of

the one-to-many semantics, but also of the one-to-one semantics. For

example, if an application needs to send and receive data on

Stewart, et al. Expires April 13, 2012 [Page 27]

Internet-Draft SCTP sockets API October 2011

different SCTP streams, SCTP_SNDRCV/SCTP_SNDINFO/SCTP_RCVINFO
ancillary data is indispensable.

Given that some ancillary data is critical, and that multiple

ancillary data items may appear in any order, applications should be
carefully written to always provide a large enough buffer to contain
all possible ancillary data that can be presented by recvmsg(). If
the buffer is too small, and crucial data is truncated, it may pose a
fatal error condition.

Thus, it is essential that applications be able to deterministically

calculate the maximum required buffer size to pass to recvmsg(). One

constraint imposed on this specification that makes this possible is

that all ancillary data definitions are of a fixed length. One way

to calculate the maximum required buffer size might be to take the

sum the sizes of all enabled ancillary data item structures, as

calculated by CMSG_SPACE. For example, if we enabled
SCTP_SNDRCV_INFO and IPV6_RECVPKTINFO [RFC3542], we would calculate
and allocate the buffer size as follows:

size_t total;
void *buf;

total = CMSG_SPACE(sizeof(struct sctp_sndrcvinfo)) +
CMSG_SPACE(sizeof(struct in6_pktinfo));

buf = malloc(total);

We could then use this buffer (buf) for msg_control on each call to
recvmsg() and be assured that we would not lose any ancillary data to
truncation.

5.3. SCTP msg_control Structures

A key element of all SCTP specific socket extensions is the use of
ancillary data to specify and access SCTP specific data via the

struct msghdr’'s msg_control member used in sendmsg() and recvmsg().
Fine-grained control over initialization and sending parameters are
handled with ancillary data.

Each ancillary data item is proceeded by a struct cmsghdr (see
Section 5.1), which defines the function and purpose of the data
contained in the cmsg_data[] member.

By default on either style socket, SCTP will pass no ancillary data;

Specific ancillary data items can be enabled with socket options
defined for SCTP; see Section 6.2.

Stewart, et al. Expires April 13, 2012 [Page 28]

Internet-Draft SCTP sockets API October 2011

Note that all ancillary types are fixed length; see Section 5.2 for
further discussion on this. These data structures use struct
sockaddr_storage (defined in [RFC3493]) as a portable, fixed length
address format.

Other protocols may also provide ancillary data to the socket layer
consumer. These ancillary data items from other protocols may
intermingle with SCTP data. For example, the IPv6 socket API
definitions ([RFC3542] and [RFC3493]) define a number of ancillary
data items. If a socket API consumer enables delivery of both SCTP
and IPv6 ancillary data, they both may appear in the same msg_control
buffer in any order. An application may thus need to handle other
types of ancillary data besides those passed by SCTP.

The sockets application must provide a buffer large enough to
accommodate all ancillary data provided via recvmsg(). If the buffer
is not large enough, the ancillary data will be truncated and the
msghdr's msg_flags will include MSG_CTRUNC.

5.3.1. SCTP Initiation Structure (SCTP_INIT)

This cmsghdr structure provides information for initializing new SCTP
associations with sendmsg(). The SCTP_INITMSG socket option uses
this same data structure. This structure is not used for recvmsg().

+ + + +
| cmsg_| Ievel | cmsg type | cmsg_ data[| |
+

| IPPROTO_. SCTP | SCTP INIT | struct sctp initmsg |
+

The sctp_initmsg structure is defined below:

struct sctp_initmsg {
uintl6_t sinit_num_ostreams;
uintl6_t sinit_max_instreams;
uintl6_t sinit_max_attempts;
uintl6_t sinit_max_init_timeo;

h

sinit_num_ostreams: This is an integer number representing the
number of streams that the application wishes to be able to send
to. This number is confirmed in the SCTP_COMM_UP notification and
must be verified since it is a negotiated number with the remote
endpoint. The default value of O indicates to use the endpoint
default value.

Stewart, et al. Expires April 13, 2012 [Page 29]

Internet-Draft SCTP sockets API October 2011

sinit_max_instreams: This value represents the maximum number of
inbound streams the application is prepared to support. This
value is bounded by the actual implementation. In other words the
user may be able to support more streams than the Operating
System. In such a case, the Operating System limit overrides the
value requested by the user. The default value of 0 indicates to
use the endpoints default value.

sinit_max_attempts: This integer specifies how many attempts the
SCTP endpoint should make at resending the INIT. This value
overrides the system SCTP 'Max.Init.Retransmits’ value. The
default value of 0 indicates to use the endpoints default value.
This is normally set to the system’s default 'Max.Init. Retransmit’
value.

sinit_max_init_timeo: This value represents the largest Time-Out or
RTO value (in milliseconds) to use in attempting an INIT.
Normally the 'RTO.Max’ is used to limit the doubling of the RTO
upon timeout. For the INIT message this value may override
'RTO.Max’. This value must not influence 'RTO.Max’ during data
transmission and is only used to bound the initial setup time. A
default value of 0 indicates to use the endpoints default value.
This is normally set to the system’s 'RTO.Max’ value (60 seconds).

5.3.2. SCTP Header Information Structure (SCTP_SNDRCV) - DEPRECATED

This cmsghdr structure specifies SCTP options for sendmsg() and

describes SCTP header information about a received message through
recvmsg(). This structure mixes the send and receive path.

SCTP_SNDINFO described in Section 5.3.4 and SCTP_RCVINFO described in
Section 5.3.5 split this information. These structures should be

used, when possible, since SCTP_SNDRCYV is deprecated.

+ + + +

| cmsg_level | cmsg_type |cmsg_data[] |

+ + + +

| IPPROTO_SCTP | SCTP_SNDRCYV | struct sctp_sndrcvinfo |

4

The sctp_sndrcvinfo structure is defined below:

Stewart, et al. Expires April 13, 2012 [Page 30]

Internet-Draft SCTP sockets API October 2011

struct sctp_sndrcvinfo {
uintl6_t sinfo_stream;
uintl6_t sinfo_ssn;
uintl6_t sinfo_flags;
uint32_t sinfo_ppid;
uint32_t sinfo_context;
uint32_t sinfo_timetolive;
uint32_t sinfo_tsn;
uint32_t sinfo_cumtsn;
sctp_assoc_t sinfo_assoc _id;

k

sinfo_stream: For recvmsg() the SCTP stack places the message’s
stream number in this value. For sendmsg() this value holds the
stream number that the application wishes to send this message to.
If a sender specifies an invalid stream number an error indication
is returned and the call fails.

sinfo_ssn: For recvmsg() this value contains the stream sequence
number that the remote endpoint placed in the DATA chunk. For
fragmented messages this is the same number for all deliveries of
the message (if more than one recvmsg() is needed to read the
message). The sendmsg() call will ignore this parameter.

sinfo_flags: This field may contain any of the following flags and
is composed of a bitwise OR of these values.

recvmsg() flags:

SCTP_UNORDERED: This flag is present when the message was sent
un-ordered.

sendmsg() flags:

SCTP_UNORDERED: This flag requests the un-ordered delivery of
the message. If this flag is clear the datagram is
considered an ordered send.

SCTP_ADDR_OVER: This flag, in the one-to-many style, requests
the SCTP stack to override the primary destination address
with the address found with the sendto/sendmsg call.

SCTP_ABORT: Setting this flag causes the specified association
to abort by sending an ABORT message to the peer. The ABORT
chunk will contain an error cause 'User Initiated Abort’
with cause code 12. The cause specific information of this
error cause is provided in msg_iov.

Stewart, et al. Expires April 13, 2012 [Page 31]

Internet-Draft SCTP sockets API October 2011

SCTP_EOF: Setting this flag invokes the SCTP graceful shutdown
procedure on the specified association. Graceful shutdown
assures that all data queued by both endpoints is
successfully transmitted before closing the association.

SCTP_SENDALL: This flag, if set, will cause a one-to-many
model socket to send the message to all associations that
are currently established on this socket. For the one-to-
one socket, this flag has no effect.

sinfo_ppid: This value in sendmsg() is an unsigned integer that is
passed to the remote end in each user message. In recvmsg() this
value is the same information that was passed by the upper layer
in the peer application. Please note that the SCTP stack performs
no byte order modification of this field. For example, if the
DATA chunk has to contain a given value in network byte order, the
SCTP user has to perform the htonl() computation.

sinfo_context: This value is an opaque 32 bit context datum that is
used in the sendmsg() function. This value is passed back to the
upper layer if an error occurs on the send of a message and is
retrieved with each undelivered message.

sinfo_timetolive: For the sending side, this field contains the
message time to live in milliseconds. The sending side will
expire the message within the specified time period if the message
as not been sent to the peer within this time period. This value
will override any default value set using any socket option. Also
note that the value of 0 is special in that it indicates no
timeout should occur on this message.

sinfo_tsn: For the receiving side, this field holds a TSN that was
assigned to one of the SCTP Data Chunks. For the sending side it
is ignored.

sinfo_cumtsn: This field will hold the current cumulative TSN as
known by the underlying SCTP layer. Note this field is ignored
when sending.

sinfo_assoc_id: The association handle field, sinfo_assoc_id, holds
the identifier for the association announced in the SCTP_COMM_UP
notification. All notifications for a given association have the
same identifier. Ignored for one-to-one style sockets.

An sctp_sndrcvinfo item always corresponds to the data in msg_iov.

Stewart, et al. Expires April 13, 2012 [Page 32]

Internet-Draft SCTP sockets API October 2011

5.3.3. Extended SCTP Header Information Structure (SCTP_EXTRCV) -
DEPRECATED

This cmsghdr structure specifies SCTP options for SCTP header
information about a received message via recvmsg(). Note that this
structure is an extended version of SCTP_SNDRCYV (see Section 5.3.2)
and will only be received if the user has set the socket option
SCTP_USE_EXT_RCVINFO to true in addition to any event subscription
needed to receive ancillary data. See Section 8.1.22 on this socket
option. Note that next message data is not valid unless the current
message is completely read, i.e. the MSG_EOR is set, in other words

if the application has more data to read from the current message

then no next message information will be available.

SCTP_NXTINFO described in Section 5.3.6 should be used when possible,
since SCTP_EXTRCYV is considered deprecated.

+ + + +
| cmsg_level | cmsg_type | cmsg_data[] |

+ 4

| IPPROTO_SCTP | SCTP_EXTRCYV | struct sctp_extrcvinfo |
+ + + +

3

The sctp_extrevinfo structure is defined below:

struct sctp_extrevinfo {
uintl6_t sinfo_stream;
uintl6_t sinfo_ssn;
uintl6_t sinfo_flags;
uint32_t sinfo_ppid;
uint32_t sinfo_context;
uint32_t sinfo_pr_value;
uint32_t sinfo_tsn;
uint32_t sinfo_cumtsn;
uintl6_t serinfo_next_flags;
uintl6_t serinfo_next_stream;
uint32_t serinfo_next_aid;
uint32_t serinfo_next_length;
uint32_t serinfo_next_ppid;
sctp_assoc_t sinfo_assoc _id;

h
sinfo_*: Please see Section 5.3.2 for the details for these fields.

serinfo_next_flags: This bitmask will hold one or more of the
following values:

Stewart, et al. Expires April 13, 2012 [Page 33]

Internet-Draft SCTP sockets API October 2011

SCTP_NEXT_MSG_AVAIL: This bit, when set to 1, indicates that next
message information is available i.e.: next_stream,
next_asocid, next_length and next_ppid fields all have valid
values. If this bit is set to 0, then these fields are not
valid and should be ignored.

SCTP_NEXT_MSG_ISCOMPLETE: This bit, when set, indicates that the
next message is completely in the receive buffer. The
next_length field thus contains the entire message size. If
this flag is set to 0, then the next_length field only contains
part of the message size since the message is still being
received (it is being partially delivered).

SCTP_NEXT_MSG_IS UNORDERED: This bit, when set, indicates that
the next message to be received was sent by the peer as
unordered. If this bit is not set (i.e. the bit is 0) the next
message to be read is an ordered message in the stream
specified.

SCTP_NEXT_MSG_IS NOTIFICATION: This bit, when set, indicates that
the next message to be received is not a message from the peer,
but instead is a MSG_NOTIFICATION from the local SCTP stack.

serinfo_next_stream: This value, when valid (see
serinfo_next_flags), contains the next stream number that will be
received on a subsequent call to one of the receive message
functions.

serinfo_next_aid: This value, when valid (see serinfo_next_flags),
contains the next association identifier that will be received on
a subsequent call to one of the receive message functions.

serinfo_next_length: This value, when valid (see
serinfo_next_flags), contains the length of the next message that
will be received on a subsequent call to one of the receive
message functions. Note that this length may be a partial length
depending on the settings of next_flags.

serinfo_next_ppid: This value, when valid (see serinfo_next_flags),
contains the ppid of the next message that will be received on a
subsequent call to one of the receive message functions.
5.3.4. SCTP Send Information Structure (SCTP_SNDINFO)

This cmsghdr structure specifies SCTP options for sendmsg().

Stewart, et al. Expires April 13, 2012 [Page 34]

Internet-Draft SCTP sockets API October 2011

+ + + +
| cmsg_level | cmsg_type | cmsg_datal] |

| IPPROTO_SCTP | SCTP_SNDINFO | struct sctp_sndinfo |
+ + + +

The sctp_sndinfo structure is defined below:

struct sctp_sndinfo {
uintl6_t snd_sid;
uintl6_t snd_flags;
uint32_t snd_ppid;
uint32_t snd_context;
sctp_assoc_t snd_assoc_id,;

h

snd_sid: This value holds the stream number that the application
wishes to send this message to. If a sender specifies an invalid
stream number an error indication is returned and the call fails.

snd_flags: This field may contain any of the following flags and is
composed of a bitwise OR of these values.

SCTP_UNORDERED: This flag requests the un-ordered delivery of the
message. If this flag is clear the datagram is considered an
ordered send.

SCTP_ADDR_OVER: This flag, in the one-to-many style, requests the
SCTP stack to override the primary destination address with the
address found with the sendto()/sendmsg call.

SCTP_ABORT: Setting this flag causes the specified association to
abort by sending an ABORT message to the peer. The ABORT chunk
will contain an error cause 'User Initiated Abort’ with cause
code 12. The cause specific information of this error cause is
provided in msg_iov.

SCTP_EOF: Setting this flag invokes the SCTP graceful shutdown
procedures on the specified association. Graceful shutdown
assures that all data queued by both endpoints is successfully
transmitted before closing the association.

SCTP_SENDALL: This flag, if set, will cause a one-to-many model
socket to send the message to all associations that are
currently established on this socket. For the one-to-one
socket, this flag has no effect.

Stewart, et al. Expires April 13, 2012 [Page 35]

Internet-Draft SCTP sockets API October 2011

snd_ppid: This value in sendmsg() is an unsigned integer that is
passed to the remote end in each user message. Please note that
the SCTP stack performs no byte order modification of this field.
For example, if the DATA chunk has to contain a given value in
network byte order, the SCTP user has to perform the htonl()
computation.

snd_context: This value is an opaque 32 bit context datum that is
used in the sendmsg() function. This value is passed back to the
upper layer if an error occurs on the send of a message and is
retrieved with each undelivered message.

snd_assoc_id: The association handle field, sinfo_assoc_id, holds
the identifier for the association announced in the SCTP_COMM_UP
notification. All notifications for a given association have the
same identifier. Ignored for one-to-one style sockets.
An sctp_sndinfo item always corresponds to the data in msg_iov.
5.3.5. SCTP Receive Information Structure (SCTP_RCVINFO)

This cmsghdr structure describes SCTP receive information about a
received message through recvmsg().

To enable the delivery of this information an application must use
the SCTP_RECVRCVINFO socket option (see Section 8.1.29).

+ + + +
| cmsg_level | cmsg_type |cmsg_datal] |
+ + + +

| IPPROTO_SCTP | SCTP_RCVINFO | struct sctp_rcvinfo |

The sctp_rcvinfo structure is defined below:

struct sctp_revinfo {
uintl6_t rcev_sid;
uintl6_trcv_ssn;
uintl6_trcv_flags;
uint32_t rcv_ppid;
uint32_t rcv_tsn;
uint32_t rcv_cumtsn;
uint32_t rcv_context;
sctp_assoc_t rcv_assoc_id;

Stewart, et al. Expires April 13, 2012 [Page 36]

Internet-Draft SCTP sockets API October 2011

rcv_sid: The SCTP stack places the message’s stream number in this
value.

rcv_ssn: This value contains the stream sequence number that the
remote endpoint placed in the DATA chunk. For fragmented messages
this is the same number for all deliveries of the message (if more
than one recvmsg() is needed to read the message).

rcv_flags: This field may contain any of the following flags and is
composed of a bitwise OR of these values.

SCTP_UNORDERED: This flag is present when the message was sent
un-ordered.

rcv_ppid: This value is the same information that was passed by the
upper layer in the peer application. Please note that the SCTP
stack performs no byte order modification of this field. For
example, if the DATA chunk has to contain a given value in network
byte order, the SCTP user has to perform the ntohl() computation.

rcv_tsn: This field holds a TSN that was assigned to one of the SCTP
Data Chunks.

rcv_cumtsn: This field will hold the current cumulative TSN as known
by the underlying SCTP layer.

rcv_assoc_id: The association handle field, sinfo_assoc _id, holds
the identifier for the association announced in the SCTP_COMM_UP
notification. All notifications for a given association have the
same identifier. Ignored for one-to-one style sockets.

rcv_context: This value is an opaque 32 bit context datum that was
set by the user with the SCTP_CONTEXT socket option. This value
is passed back to the upper layer if an error occurs on the send
of a message and is retrieved with each undelivered message.

An sctp_rcvinfo item always corresponds to the data in msg_iov.

5.3.6. SCTP Next Receive Information Structure (SCTP_NXTINFO)
This cmsghdr structure describes SCTP receive information of the next
message which will be delivered through recvmsg() if this information
is already available when delivering the current message.

To enable the delivery of this information an application must use
the SCTP_RECVNXTINFO socket option (see Section 8.1.30).

Stewart, et al. Expires April 13, 2012 [Page 37]

Internet-Draft SCTP sockets API October 2011

+ + + +
| cmsg_level | cmsg_type | cmsg_datal] |

| IPPROTO_SCTP | SCTP_NXTINFO | struct sctp_nxtinfo |
+ + + +

The sctp_nxtinfo structure is defined below:

struct sctp_nxtinfo {
uintl6_t nxt_sid;
uintl6_t nxt_flags;
uint32_t nxt_ppid;
uint32_t nxt_length;
sctp_assoc_t nxt_assoc _id;

h

nxt_sid: The SCTP stack places the next message’s stream number in
this value.

nxt_flags: This field may contain any of the following flags and is
composed of a bitwise OR of these values.

SCTP_UNORDERED: This flag is present when the next message was
sent un-ordered.

SCTP_COMPLETE: This flag indicates that the entire message has
been received and is in the socket buffer. Note that this has
special implications with respect to the nxt_length field, see
nxt_length description below.

SCTP_NOTIFICATION: This flag is present when the next message is
not a user message but instead is a notification.

nxt_ppid: This value is the same information that was passed by the
upper layer in the peer application for the next message. Please
note that the SCTP stack performs no byte order modification of
this field. For example, if the DATA chunk has to contain a given
value in network byte order, the SCTP user has to perform the
ntohl() computation.

nxt_length: This value is the length of the message currently within
the socket buffer. This might NOT be the entire length of the
message since a partial delivery may be in progress. Only if the
flag SCTP_COMPLETE is set in the nxt_flags field does this field
represent the entire next message size.

Stewart, et al. Expires April 13, 2012 [Page 38]

Internet-Draft SCTP sockets API October 2011

nxt_assoc_id: The association handle field of the next message,
nxt_assoc_id, holds the identifier for the association announced
in the SCTP_COMM_UP noatification. All notifications for a given
association have the same identifier. Ignored for one-to-one
style sockets.

5.3.7. SCTP PR-SCTP Information Structure (SCTP_PRINFO)

This cmsghdr structure specifies SCTP options for sendmsg().

+ + + +
| cmsg_level | cmsg_type | cmsg_data[] |
+ + + +

| IPPROTO_SCTP | SCTP_PRINFO | struct sctp_prinfo |
+ + + +

The sctp_prinfo structure is defined below:

struct sctp_prinfo {
uint16_t pr_policy;
uint32_t pr_value;

k

pr_policy: This specifies which PR-SCTP policy is used. Using
SCTP_PR_SCTP_NONE results in a reliable transmission. When
SCTP_PR_SCTP_TTL is used, the PR-SCTP policy "timed reliability"
defined in [RFC3758] is used. In this case, the lifetime is
provided in pr_value.

pr_value: The meaning of this field depends on the PR-SCTP policy
specified by the pr_policy field. It is ignored when
SCTP_PR_SCTP_NONE is specified. In case of SCTP_PR_SCTP_TTL the
lifetime in milliseconds is specified.

An sctp_prinfo item always corresponds to the data in msg_iov.
5.3.8. SCTP AUTH Information Structure (SCTP_AUTHINFO)
This cmsghdr structure specifies SCTP options for sendmsg().
+ + + +

| cmsg_| Ievel | cmsg_ type | cmsg_ data[] |
+

| IPPROTO SCTP | SCTP _AUTHINFO | struct sctp_authinfo |

The sctp_authinfo structure is defined below:

Stewart, et al. Expires April 13, 2012 [Page 39]

Internet-Draft SCTP sockets API October 2011

struct sctp_authinfo {
uintl6_t auth_keynumber;

g

auth_keynumber: This specifies the shared key identifier used for
sending the user message.

An sctp_authinfo item always corresponds to the data in msg_iov.
Please note that the SCTP implementation must not bundle user
messages that needs to be authenticated using different shared key
identifiers.

5.3.9. SCTP Destination IPv4 Address Structure (SCTP_DSTADDRV4)

This cmsghdr structure specifies SCTP options for sendmsg().

+ + + +

| cmsg_level |cmsg type | cmsg_data] |

+ + + +

| IPPROTO_SCTP | SCTP_DSTADDRVA4 | struct in_addr |
+ + + +

This ancillary data can be used to provide more than one destination

address to sendmsg(). It can be used to implement sctp_sendv() using
sendmsg().

5.3.10. SCTP Destination IPv6 Address Structure (SCTP_DSTADDRV6)

This cmsghdr structure specifies SCTP options for sendmsg().

+ + + +

| cmsg_level |cmsg_type | cmsg_data]] |

+ + + +

| IPPROTO_SCTP | SCTP_DSTADDRVG | struct in6_addr |
+ + + +

This ancillary data can be used to provide more than one destination

address to sendmsg(). It can be used to implement sctp_sendv() using
sendmsg().

6. SCTP Events and Notifications

An SCTP application may need to understand and process events and
errors that happen on the SCTP stack. These events include network
status changes, association startups, remote operational errors and
undeliverable messages. All of these can be essential for the
application.

Stewart, et al. Expires April 13, 2012 [Page 40]

Internet-Draft SCTP sockets API October 2011

When an SCTP application layer does a recvmsg() the message read is
normally a data message from a peer endpoint. If the application
wishes to have the SCTP stack deliver notifications of non-data

events, it sets the appropriate socket option for the notifications

it wants. See Section 6.2 for these socket options. When a

notification arrives, recvmsg() returns the notification in the
application-supplied data buffer via msg_iov, and sets
MSG_NOTIFICATION in msg_flags.

This section details the natification structures. Every notification
structure carries some common fields which provide general
information.

A recvmsg() call will return only one notification at a time. Just

as when reading normal data, it may return part of a notification if

the msg_iov buffer is not large enough. If a single read is not
sufficient, msg_flags will have MSG_EOR clear. The user must finish
reading the notification before subsequent data can arrive.

6.1. SCTP Notification Structure

The notification structure is defined as the union of all
notification types.

union sctp_natification {
struct sctp_tlv {
uintl6_t sn_type; /* Notification type. */
uintl6_t sn_flags;
uint32_t sn_length;
} sn_header;
struct sctp_assoc_change sn_assoc_change;
struct sctp_paddr_change sn_paddr_change;
struct sctp_remote_error sn_remote_error;
struct sctp_send_failed sn_send_failed;
struct sctp_shutdown_event sn_shutdown_event;
struct sctp_adaptation_event sn_adaptation_event;
struct sctp_pdapi_event sn_pdapi_event;
struct sctp_authkey event sn_auth_event;
struct sctp_sender_dry_event sn_sender_dry_event;
struct sctp_send_failed_event sn_send_failed_event;

k

sn_type: The following list describes the SCTP notification and
event types for the field sn_type.

Stewart, et al. Expires April 13, 2012 [Page 41]

Internet-Draft SCTP sockets API October 2011

SCTP_ASSOC_CHANGE: This tag indicates that an association has
either been opened or closed. Refer to Section 6.1.1 for
details.

SCTP_PEER_ADDR_CHANGE: This tag indicates that an address that is
part of an existing association has experienced a change of
state (e.g. a failure or return to service of the reachability
of an endpoint via a specific transport address). Please see
Section 6.1.2 for data structure details.

SCTP_REMOTE_ERROR: The attached error message is an Operational
Error received from the remote peer. It includes the complete
TLV sent by the remote endpoint. See Section 6.1.3 for the
detailed format.

SCTP_SEND_FAILED_EVENT: The attached datagram could not be sent
to the remote endpoint. This structure includes the original
SCTP_SNDINFO that was used in sending this message i.e. this
structure uses the sctp_sndinfo per Section 6.1.11.

SCTP_SHUTDOWN_EVENT: The peer has sent a SHUTDOWN. No further
data should be sent on this socket.

SCTP_ADAPTATION_INDICATION: This notification holds the peer’s
indicated adaptation layer. Please see Section 6.1.6.

SCTP_PARTIAL_DELIVERY_EVENT: This notification is used to tell a
receiver that the partial delivery has been aborted. This may
indicate the association is about to be aborted. Please see
Section 6.1.7.

SCTP_AUTHENTICATION_EVENT: This notification is used to tell a
receiver that either an error occurred on authentication, or a
new key was made active. See Section 6.1.8.
SCTP_SENDER_DRY_EVENT: This natification is used to inform the
application that the sender has no more user data queued for
transmission nor retransmission. See Section 6.1.9.
sn_flags: These are natification-specific flags.

sn_length: This is the length of the whole sctp_notification
structure including the sn_type, sn_flags, and sn_length fields.

Stewart, et al. Expires April 13, 2012 [Page 42]

Internet-Draft SCTP sockets API October 2011

6.1.1. SCTP_ASSOC_CHANGE

Communication notifications inform the application that an SCTP
association has either begun or ended. The identifier for a new
association is provided by this naotification. The notification
information has the following format:

struct sctp_assoc_change {
uintl6_t sac_type;
uintl6_t sac_flags;
uint32_t sac_length;
uintl6_t sac_state;
uintl6_t sac_error;
uintl6_t sac_outbound_streams;
uintl6_t sac_inbound_streams;
sctp_assoc_t sac_assoc_id;
uint8_t sac_info[];

h
sac_type: It should be SCTP_ASSOC_CHANGE.
sac_flags: Currently unused.

sac_length: This field is the total length of the notification data,
including the notification header.

sac_state: This field holds one of a number of values that
communicate the event that happened to the association. They
include:

SCTP_COMM_UP: A new association is now ready and data may be
exchanged with this peer. When an association has been
established successfully, this notification should be the first
one.

SCTP_COMM_LOST: The association has failed. The association is
now in the closed state. If SEND_FAILED notifications are
turned on, an SCTP_COMM_LOST is accompanied by a series of
SCTP_SEND_FAILED_EVENT events, one for each outstanding
message.

SCTP_RESTART: SCTP has detected that the peer has restarted.

SCTP_SHUTDOWN_COMP: The association has gracefully closed.

Stewart, et al. Expires April 13, 2012 [Page 43]

Internet-Draft SCTP sockets API October 2011

SCTP_CANT_STR_ASSOC: The association failed to setup. If non
blocking mode is set and data was sent (on a one-to-many style
socket), an SCTP_CANT_STR_ASSOC is accompanied by a series of
SCTP_SEND_FAILED_EVENT events, one for each outstanding
message.

sac_error: If the state was reached due to an error condition (e.qg.
SCTP_COMM_LOST) any relevant error information is available in
this field. This corresponds to the protocol error codes defined
in [RFC4960].

sac_outbound_streams:

sac_inbound_streams: The maximum number of streams allowed in each
direction are available in sac_outbound_streams and sac_inbound
streams.

sac_assoc_id: The sac_assoc _id field holds the identifier for the
association. All notifications for a given association have the
same association identifier. For a one-to-one style socket, this
field is ignored.

sac_info: If the sac_state is SCTP_COMM_LOST and an ABORT chunk was
received for this association, sac_info[] contains the complete
ABORT chunk as defined in the SCTP specification [RFC4960] Section
3.3.7. If the sac_state is SCTP_COMM_UP or SCTP_RESTART, sac_info
may contain an array of uint8_t describing the features that the
current association supports. Features may include

SCTP_ASSOC_SUPPORTS_PR: Both endpoints support the protocol
extension described in [RFC3758].

SCTP_ASSOC_SUPPORTS_AUTH: Both endpoints support the protocol
extension described in [RFC4895].

SCTP_ASSOC_SUPPORTS_ASCONF: Both endpoints support the protocol
extension described in [RFC5061].

SCTP_ASSOC_SUPPORTS_MULTIBUF: For a one-to-many style socket, the
local endpoints use separate send and/or receive buffers for
each SCTP association.
6.1.2. SCTP_PEER_ADDR_CHANGE
When a destination address of a multi-homed peer encounters a state

change a peer address change event is sent. The notification has the
following format:

Stewart, et al. Expires April 13, 2012 [Page 44]

Internet-Draft SCTP sockets API October 2011

struct sctp_paddr_change {
uintl6_t spc_type;
uintl6_t spc_flags;
uint32_t spc_length;
struct sockaddr_storage spc_aaddr;
uint32_t spc_state;
uint32_t spc_error;
sctp_assoc_t spc_assoc_id;

}
spc_type: It should be SCTP_PEER_ADDR_CHANGE.

spc_flags: Currently unused.

spc_length: This field is the total length of the notification data,
including the natification header.

spc_aaddr: The affected address field holds the remote peer’s
address that is encountering the change of state.

spc_state: This field holds one of a number of values that
communicate the event that happened to the address. They include:

SCTP_ADDR_AVAILABLE: This address is now reachable. This
notification is provided whenever an address becomes reachable.

SCTP_ADDR_UNREACHABLE: The address specified can no longer be
reached. Any data sent to this address is rerouted to an
alternate until this address becomes reachable. This
notification is provided whenever an address becomes
unreachable.

SCTP_ADDR_REMOVED: The address is no longer part of the
association.

SCTP_ADDR_ADDED: The address is now part of the association.
SCTP_ADDR_MADE_PRIM: This address has now been made to be the
primary destination address. This notification is provided
whenever an address is made primary.
spc_error: If the state was reached due to any error condition (e.g.

SCTP_ADDR_UNREACHABLE) any relevant error information is available
in this field.

Stewart, et al. Expires April 13, 2012 [Page 45]

Internet-Draft SCTP sockets API October 2011

spc_assoc_id: The spc_assoc _id field holds the identifier for the
association. All notifications for a given association have the
same association identifier. For a one-to-one style socket, this
field is ignored.

6.1.3. SCTP_REMOTE_ERROR

A remote peer may send an Operational Error message to its peer.

This message indicates a variety of error conditions on an

association. The entire ERROR chunk as it appears on the wire is
included in an SCTP_REMOTE_ERROR event. Please refer to the SCTP
specification [RFC4960] and any extensions for a list of possible

error formats. An SCTP error notification has the following format:

struct sctp_remote_error {
uintl6_t sre_type;
uintl6_t sre_flags;
uint32_t sre_length;
uintl6_t sre_error;
sctp_assoc_t sre_assoc_id;
uint8_t sre_datal];

%
sre_type: It should be SCTP_REMOTE_ERROR.
sre_flags: Currently unused.

sre_length: This field is the total length of the notification data,
including the natification header and the contents of sre_data.

sre_error: This value represents one of the Operational Error causes
defined in the SCTP specification, in network byte order.

sre_assoc_id: The sre_assoc_id field holds the identifier for the
association. All notifications for a given association have the
same association identifier. For a one-to-one style socket, this
field is ignored.

sre_data: This contains the ERROR chunk as defined in the SCTP
specification [RFC4960] Section 3.3.10.

6.1.4. SCTP_SEND_FAILED - DEPRECATED

Please note that this notification is deprecated. Use
SCTP_SEND_FAILED_EVENT instead.

If SCTP cannot deliver a message, it can return back the message as a
notification if the SCTP_SEND_FAILED event is enabled. The

Stewart, et al. Expires April 13, 2012 [Page 46]

Internet-Draft SCTP sockets API October 2011

notification has the following format:

struct sctp_send_failed {
uintl6_t ssf type;
uintl6_t ssf flags;
uint32_t ssf _length;
uint32_t ssf_error;
struct sctp_sndrcvinfo ssf_info;
sctp_assoc_t ssf_assoc_id;
uint8_t ssf_data]];

h
ssf_type: It should be SCTP_SEND_FAILED.
ssf_flags: The flag value will take one of the following values:

SCTP_DATA_UNSENT: Indicates that the data was never put on the
wire.

SCTP_DATA_SENT: Indicates that the data was put on the wire.
Note that this does not necessarily mean that the data was (or
was not) successfully delivered.

ssf_length: This field is the total length of the notification data,
including the notification header and the payload in ssf_data.

ssf_error: This value represents the reason why the send failed, and
if set, will be an SCTP protocol error code as defined in
[RFC4960] Section 3.3.10.

ssf_info: The ancillary data (struct sctp_sndrcvinfo) used to send
the undelivered message. Regardless of if ancillary data is used
or not, the ssf_info.sinfo_flags field indicates if the complete
message or only part of the message is returned in ssf_data. If
only part of the message is returned, it means that the part which
is not present has been sent successfully to the peer.

If the complete message cannot be sent, the SCTP_DATA_NOT_FRAG
flags is set in ssf_info.sinfo_flags. If the first part of the

message is sent successfully, the SCTP_DATA LAST_FRAG is set.
This means that the tail end of the message is returned in

ssf_data.

ssf_assoc_id: The ssf_assoc _id field, ssf_assoc _id, holds the
identifier for the association. All notifications for a given
association have the same association identifier. For a one-to-
one style socket, this field is ignored.

Stewart, et al. Expires April 13, 2012 [Page 47]

Internet-Draft SCTP sockets API October 2011

ssf_data: The undelivered message or part of the undelivered message
will be present in the ssf_data field. Note that the
ssf_info.sinfo_flags field as noted above should be used to
determine if a complete message is present or just a piece of the
message. Note that only user data is present in this field, any
chunk headers or SCTP common headers must be removed by the SCTP
stack.

6.1.5. SCTP_SHUTDOWN_EVENT

When a peer sends a SHUTDOWN, SCTP delivers this natification to
inform the application that it should cease sending data.

struct sctp_shutdown_event {
uintl6é_t sse_type;
uintlé_t sse flags;
uint32_t sse_length;
sctp_assoc_t sse_assoc_id;

h
sse_type: It should be SCTP_SHUTDOWN_EVENT.
sse_flags: Currently unused.

sse_length: This field is the total length of the notification data,
including the notification header. It will generally be
sizeof(struct sctp_shutdown_event).

sse_flags: Currently unused.

sse_assoc_id: The sse_assoc _id field holds the identifier for the
association. All notifications for a given association have the
same association identifier. For a one-to-one style socket, this
field is ignored.

6.1.6. SCTP_ADAPTATION_INDICATION

When a peer sends an Adaptation Layer Indication parameter as
described in [RFC5061], SCTP delivers this notification to inform the
application about the peer’s adaptation layer indication.

struct sctp_adaptation_event {
uintl6_t sai_type;
uintl6_t sai_flags;
uint32_t sai_length;
uint32_t sai_adaptation_ind;
sctp_assoc_t sai_assoc_id;

Stewart, et al. Expires April 13, 2012 [Page 48]

Internet-Draft SCTP sockets API October 2011

sai_type: It should be SCTP_ADAPTATION_INDICATION.
sai_flags: Currently unused.

sai_length: This field is the total length of the notification data,
including the notification header. It will generally be
sizeof(struct sctp_adaptation_event).

sai_adaptation_ind: This field holds the bit array sent by the peer
in the adaptation layer indication parameter.

sai_assoc_id: The sai_assoc _id field holds the identifier for the
association. All notifications for a given association have the
same association identifier. For a one-to-one style socket, this
field is ignored.

6.1.7. SCTP_PARTIAL_DELIVERY_EVENT

When a receiver is engaged in a partial delivery of a message this
notification will be used to indicate various events.

struct sctp_pdapi_event {
uintl6_t pdapi_type;
uintl6_t pdapi_flags;
uint32_t pdapi_length;
uint32_t pdapi_indication;
uint32_t pdapi_stream;
uint32_t pdapi_seq;
sctp_assoc_t pdapi_assoc _id;

h

pdapi_type: It should be SCTP_PARTIAL_DELIVERY_EVENT.

pdapi_flags: Currently unused.

pdapi_length: This field is the total length of the notification
data, including the notification header. It will generally be

sizeof(struct sctp_pdapi_event).

pdapi_indication: This field holds the indication being sent to the
application. Currently there is only one defined value:

SCTP_PARTIAL_DELIVERY_ABORTED: This indicates that the partial

delivery of a user message has been aborted. This happens, for
example, if an association is aborted while a partial delivery

is going on or the user message gets abandoned using PR-SCTP
while the partial delivery of this message is going on.

Stewart, et al. Expires April 13, 2012 [Page 49]

Internet-Draft SCTP sockets API October 2011

pdapi_stream: This field holds the stream on which the partial
delivery event happened.

pdapi_seq: This field holds the stream sequence number which was
being partially delivered.

pdapi_assoc_id: The pdapi_assoc_id field holds the identifier for
the association. All notifications for a given association have
the same association identifier. For a one-to-one style socket
this field is ignored.

6.1.8. SCTP_AUTHENTICATION_EVENT

[RFC4895] defines an extension to authenticate SCTP messages. The
following notification is used to report different events relating to
the use of this extension.

struct sctp_authkey_event {
uintl6_t auth_type;
uintl6_t auth_flags;
uint32_t auth_length;
uintl6_t auth_keynumber;
uint32_t auth_indication;
sctp_assoc_t auth_assoc_id;

h

auth_type: It should be SCTP_AUTHENTICATION_EVENT.
auth_flags: Currently unused.

auth_length: This field is the total length of the notification

data, including the notification header. It will generally be
sizeof(struct sctp_authkey event).

auth_keynumber: This field holds the keynumber for the affected key
indicated in the event (depends on auth_indication).

auth_indication: This field holds the error or indication being
reported. The following values are currently defined:

SCTP_AUTH_NEW_KEY: This report indicates that a new key has been
made active (used for the first time by the peer) and is now
the active key. The auth_keynumber field holds the user
specified key number.

Stewart, et al. Expires April 13, 2012 [Page 50]

Internet-Draft SCTP sockets API October 2011

SCTP_AUTH_NO_AUTH: This report indicates that the peer does not
support SCTP AUTH as defined in [RFC4895].

SCTP_AUTH_FREE_KEY: This report indicates that the SCTP
implementation will no longer use the key identifier specified
in auth_keynumber.

auth_assoc_id: The auth_assoc_id field holds the identifier for the
association. All notifications for a given association have the
same association identifier. For a one-to-one style socket this
field is ignored.

6.1.9. SCTP_SENDER_DRY_EVENT

When the SCTP stack has no more user data to send or retransmit, this
notification is given to the user. Also, at the time when a user app
subscribes to this event, if there is no data to be sent or

retransmit, the stack will immediately send up this notification.

struct sctp_sender_dry_event {
uintl6_t sender_dry_type;

uintl6_t sender_dry flags;

uint32_t sender_dry_length;
sctp_assoc_t sender_dry_assoc _id;

}1
sender_dry_type: It should be SCTP_SENDER_DRY_EVENT.
sender_dry flags: Currently unused.

sender_dry_length: This field is the total length of the
notification data, including the notification header. It will
generally be sizeof(struct sctp_sender_dry_event).

sender_dry _assoc_id: The sender_dry_assoc_id field holds the
identifier for the association. All notifications for a given
association have the same association identifier. For a one-to-
one style socket this field is ignored.

6.1.10. SCTP_NOTIFICATIONS_STOPPED_EVENT

SCTP notifications, when subscribed to, are reliable. They are

always delivered as long as there is space in the socket receive

buffer. However, if an implementation experiences a notification

storm, it may run out of socket buffer space. When this occurs it

may wish to disable notifications. If the implementation chooses to

do this, it will append a final notification
SCTP_NOTIFICATIONS_STOPPED_EVENT. This natification is a union

Stewart, et al. Expires April 13, 2012 [Page 51]

Internet-Draft SCTP sockets API October 2011

sctp_notification, where only the struct sctp_tlv (see the union
above) is used. It only contains this type in the sn_type field, the
sn_length field set to the size of an sctp_tlv structure and the
sn_flags setto 0. If an application receives this notification, it
will need to re-subscribe to any natifications of interest to it,
except for the sctp_data_io_event (note that SCTP_EVENTS is
deprecated).

An endpoint is automatically subscribed to this event as soon as it
is subscribed to any event other than data io events.

6.1.11. SCTP_SEND_FAILED_EVENT

If SCTP cannot deliver a message, it can return back the message as a
notification if the SCTP_SEND_FAILED_EVENT event is enabled. The
notification has the following format:

struct sctp_send_failed_event {

uintl6_t ssfe_type;

uintl6_t ssfe_flags;

uint32_t ssfe_length;

uint32_t ssfe_error;

struct sctp_sndinfo ssfe_info;
sctp_assoc_t ssfe_assoc id;
uint8_t ssfe_datal(];

%
ssfe_type: It should be SCTP_SEND_FAILED_EVENT.
ssfe_flags: The flag value will take one of the following values:

SCTP_DATA_UNSENT: Indicates that the data was never put on the
wire.

SCTP_DATA_SENT: Indicates that the data was put on the wire.
Note that this does not necessarily mean that the data was (or
was not) successfully delivered.

ssfe_length: This field is the total length of the notification
data, including the notification header and the payload in
ssf_data.

ssfe_error: This value represents the reason why the send failed,

and if set, will be an SCTP protocol error code as defined in
[RFC4960] Section 3.3.10.

Stewart, et al. Expires April 13, 2012 [Page 52]

Internet-Draft SCTP sockets API October 2011

ssfe_info: The ancillary data (struct sctp_sndinfo) used to send the
undelivered message. Regardless of if ancillary data is used or
not, the ssfe_info.sinfo_flags field indicates if the complete
message or only part of the message is returned in ssf_data. If
only part of the message is returned, it means that the part which
is not present has been sent successfully to the peer.

If the complete message cannot be sent, the SCTP_DATA_NOT_FRAG
flags is set in ssfe_info.sinfo_flags. If the first part of the

message is sent successfully, the SCTP_DATA LAST_FRAG is set.
This means that the tail end of the message is returned in

ssf_data.

ssfe_assoc_id: The ssfe_assoc _id field, ssf_assoc_id, holds the
identifier for the association. All notifications for a given
association have the same association identifier. For a one-to-
one style socket, this field is ignored.

ssfe_data: The undelivered message or part of the undelivered
message will be present in the ssf_data field. Note that the
ssf_info.sinfo_flags field as noted above should be used to
determine if a complete message is present or just a piece of the
message. Note that only user data is present in this field, any
chunk headers or SCTP common headers must be removed by the SCTP
stack.

6.2. Notification Interest Options
6.2.1. SCTP_EVENTS option - DEPRECATED

Please note that this option is deprecated. Use the SCTP_EVENT
option described in Section 6.2.2 instead.

To receive SCTP event notifications, an application registers its
interest by setting the SCTP_EVENTS socket option. The application
then uses recvmsg() to retrieve notifications. A notification is

stored in the data part (msg_iov) of the struct msghdr. The socket
option uses the following structure:

Stewart, et al. Expires April 13, 2012 [Page 53]

Internet-Draft SCTP sockets API October 2011

struct sctp_event_subscribe {
uint8_t sctp_data_io_event;
uint8_t sctp_association_event;
uint8_t sctp_address_event;
uint8_t sctp_send_failure_event;
uint8_t sctp_peer_error_event;
uint8_t sctp_shutdown_event;
uint8_t sctp_partial_delivery event;
uint8_t sctp_adaptation_layer_event;
uint8_t sctp_authentication_event;
uint8_t sctp_sender_dry_event;

%

sctp_data_io_event: Setting this flag to 1 will cause the reception
of SCTP_SNDRCYV information on a per message basis. The
application will need to use the recvmsg() interface so that it
can receive the event information contained in the msg_control
field. Setting the flag to O will disable the reception of the
message control information. Note that this is not really a
notification and this is stored in the ancillary data
(msg_control), not in the data part (msg_iov).

sctp_association_event: Setting this flag to 1 will enable the
reception of association event naotifications. Setting the flag to
0 will disable association event notifications.

sctp_address_event: Setting this flag to 1 will enable the reception
of address event notifications. Setting the flag to 0 will
disable address event notifications.

sctp_send_failure_event: Setting this flag to 1 will enable the
reception of send failure event notifications. Setting the flag
to O will disable send failure event notifications.

sctp_peer_error_event: Setting this flag to 1 will enable the
reception of peer error event notifications. Setting the flag to
0 will disable peer error event notifications.

sctp_shutdown_event: Setting this flag to 1 will enable the
reception of shutdown event notifications. Setting the flag to 0
will disable shutdown event notifications.

sctp_partial_delivery_event: Setting this flag to 1 will enable the

reception of partial delivery notifications. Setting the flag to
0 will disable partial delivery event notifications.

Stewart, et al. Expires April 13, 2012 [Page 54]

Internet-Draft SCTP sockets API October 2011

sctp_adaptation_layer_event: Setting this flag to 1 will enable the
reception of adaptation layer notifications. Setting the flag to
0 will disable adaptation layer event notifications.

sctp_authentication_event: Setting this flag to 1 will enable the
reception of authentication layer notifications. Setting the flag
to O will disable authentication layer event notifications.

sctp_sender_dry_event: Setting this flag to 1 will enable the
reception of sender dry naotifications. Setting the flag to 0 will
disable sender dry event notifications.

An example where an application would like to receive data_io_events
and association_events but no others would be as follows:

{

struct sctp_event_subscribe events;
memset(&events, 0, sizeof(events));

events.sctp_data_io_event = 1;
events.sctp_association_event = 1;

setsockopt(sd, IPPROTO_SCTP, SCTP_EVENTS, &events, sizeof(events));
}

Note that for one-to-many style SCTP sockets, the caller of recvmsg()
receives ancillary data and notifications for all associations bound

to the file descriptor. For one-to-one style SCTP sockets, the

caller receives ancillary data and notifications only for the single
association bound to the file descriptor.

By default both the one-to-one style and the one-to-many style socket
do not subscribe to any notification.

6.2.2. SCTP_EVENT option

The SCTP_EVENTS socket option has one issue for future compatibility.
As new features are added the structure (sctp_event_subscribe) must
be expanded. This can cause an application binary interface (ABI)

issue unless an implementation has added padding at the end of the
structure. To avoid this problem, SCTP_EVENTS has been deprecated
and a new socket option SCTP_EVENT has taken its place. The option
is used with the following structure:

Stewart, et al. Expires April 13, 2012 [Page 55]

Internet-Draft SCTP sockets API October 2011

struct sctp_event {
sctp_assoc_t se_assoc_id;
uintlé_t se_type;
uint8_ t se_on;

k

se_assoc_id: The se_assoc_id field is ignored for one-to-one style
sockets. For one-to-many style sockets this field can be a
particular association identifier or SCTP_{FUTURE|CURRENT)]|
ALL} ASSOC.

se_type: The se_type field can be filled with any value that would
show up in the respective sn_type field (in the sctp_tlv structure
of the notification).

se_on: The se_on field is set to 1 to turn on an event and set to 0
to turn off an event.

To use this option the user fills in this structure and then calls
the setsockopt() to turn on or off an individual event. The
following is an example use of this option:

{

struct sctp_event event;

memset(&event, 0, sizeof(event));
event.se_assoc_id = SCTP_FUTURE_ASSOC;
event.se_type = SCTP_SENDER_DRY_EVENT;

event.se_on =1;
setsockopt(sd, IPPROTO_SCTP, SCTP_EVENT, &event, sizeof(event));

}

By default both the one-to-one style and the one-to-many style socket
do not subscribe to any notification.

7. Common Operations for Both Styles

7.1. send(), recv(), sendto(), and recvfrom()
Applications can use send() and sendto() to transmit data to the peer
of an SCTP endpoint. recv() and recvfrom() can be used to receive

data from the peer.

The function prototypes are

Stewart, et al. Expires April 13, 2012 [Page 56]

Internet-Draft SCTP sockets API October 2011

ssize_t send(int sd,
const void *msg,
size_tlen,
int flags);

ssize_t sendto(int sd,
const void *msg,
size_tlen,
int flags,
const struct sockaddr *to,
socklen_t tolen);

ssize_t recv(int sd,
void *buf,
size_tlen,
int flags);

ssize_t recvfrom(int sd,
void *buf,
size_tlen,
int flags,
struct sockaddr *from,
socklen_t *fromlen);
and the arguments are
sd: The socket descriptor of an SCTP endpoint.
msg: The message to be sent.
len: The size of the message or the size of the buffer.

to: One of the peer addresses of the association to be used to send
the message.

tolen: The size of the address.
buf: The buffer to store a received message.

from: The buffer to store the peer address used to send the received
message.

Stewart, et al. Expires April 13, 2012 [Page 57]

Internet-Draft SCTP sockets API October 2011

fromlen: The size of the from address.
flags: (described below).

These calls give access to only basic SCTP protocol features. If
either peer in the association uses multiple streams, or sends
unordered data, these calls will usually be inadequate, and may
deliver the data in unpredictable ways.

SCTP has the concept of multiple streams in one association. The
above calls do not allow the caller to specify on which stream a
message should be sent. The system uses stream 0 as the default
stream for send() and sendto(). recv() and recvfrom() return data
from any stream, but the caller can not distinguish the different
streams. This may result in data seeming to arrive out of order.
Similarly, if a data chunk is sent unordered, recv() and recvfrom()
provide no indication.

SCTP is message based. The msg buffer above in send() and sendto()
is considered to be a single message. This means that if the caller
wants to send a message that is composed by several buffers, the
caller needs to combine them before calling send() or sendto().
Alternately, the caller can use sendmsg() to do that without

combining them. Sending a message using send() or sendto() is atomic
unless explicit EOR marking is enabled on the socket specified by sd.
Using sendto() on a non-connected one-to-one style socket for

implicit connection setup may or may not work depending on the SCTP
implementation. recv() and recvfrom() cannot distinguish message
boundaries (i.e. there is no way to observe the MSG_EOR flag to
detect partial delivery).

In receiving, if the buffer supplied is not large enough to hold a
complete message, the receive call acts like a stream socket and
returns as much data as will fit in the buffer.

Note, the send() and recv() calls may not be used for a one-to-many
style socket.

Note, if an application calls a send() or sendto() function with no

user data the SCTP implementation should reject the request with an
appropriate error message. An implementation is not allowed to send
a DATA chunk with no user data [RFC4960].

7.2. setsockopt() and getsockopt()
Applications use setsockopt() and getsockopt() to set or retrieve

socket options. Socket options are used to change the default
behavior of socket calls. They are described in Section 8.

Stewart, et al. Expires April 13, 2012 [Page 58]

Internet-Draft SCTP sockets API October 2011

The function prototypes are

int getsockopt(int sd,
int level,
int optname,
void *optval,
socklen_t *optlen);

and

int setsockopt(int sd,
int level,
int optname,
const void *optval,
socklen_t optlen);

and the arguments are

sd: The socket descriptor.

level: Setto IPPROTO_SCTP for all SCTP options.
optname: The option name.

optval: The buffer to store the value of the option.

optlen: The size of the buffer (or the length of the option
returned).

They return 0 on success and -1 in case of an error.

All socket options set on a one-to-one style listening socket also
apply to all future accepted sockets. For one-to-many style sockets
often a socket option will pass a structure that includes an assoc _id
field. This field can be filled with the association identifier of a
particular association and unless otherwise specified can be filled
with one of the following constants:

SCTP_FUTURE_ASSOC: Specifies that only future associations created
after this socket option will be affected by this call.

SCTP_CURRENT_ASSOC: Specifies that only currently existing

associations will be affected by this call, future associations
will still receive the previous default value.

Stewart, et al. Expires April 13, 2012 [Page 59]

Internet-Draft SCTP sockets API October 2011

SCTP_ALL_ASSOC: Specifies that all current and future associations
will be affected by this call.

7.3. read() and write()
Applications can use read() and write() to send and receive data to
and from a peer. They have the same semantics as send() and recv()
except that the flags parameter cannot be used.
7.4. getsockname()
Applications use getsockname() to retrieve the locally-bound socket
address of the specified socket. This is especially useful if the
caller let SCTP choose a local port. This call is for single homed
endpoints. It does not work well with multi-homed endpoints. See
Section 9.5 for a multi-homed version of the call.
The function prototype is
int getsockname(int sd,
struct sockaddr *address,
socklen_t *len);
and the arguments are
sd: The socket descriptor to be queried.
address: On return, one locally bound address (chosen by the SCTP
stack) is stored in this buffer. If the socket is an IPv4 socket,
the address will be IPv4. If the socket is an IPv6 socket, the
address will be either an IPv6 or IPv4 address.

len: The caller should set the length of the address here. On
return, this is set to the length of the returned address.

It returns 0 on success and -1 in case of an error.

If the actual length of the address is greater than the length of the
supplied sockaddr structure, the stored address will be truncated.

If the socket has not been bound to a local name, the value stored in
the object pointed to by address is unspecified.

7.5. Implicit Association Setup
The application can begin sending and receiving data using the

sendmsg()/recvmsg() or sendto()/recvfrom() calls, without going
through any explicit association setup procedures (i.e., no connect()

Stewart, et al. Expires April 13, 2012 [Page 60]

Internet-Draft SCTP sockets API October 2011

calls required).

Whenever sendmsg() or sendto() is called and the SCTP stack at the
sender finds that no association exists between the sender and the
intended receiver (identified by the address passed either in the
msg_name field of msghdr structure in the sendmsg() call or the
dest_addr field in the sendto() call), the SCTP stack will
automatically setup an association to the intended receiver.

Upon the successful association setup an SCTP_COMM_UP naotification
will be dispatched to the socket at both the sender and receiver

side. This natification can be read by the recvmsg() system call

(see Section 3.1.4).

Note, if the SCTP stack at the sender side supports bundling, the
first user message may be bundled with the COOKIE ECHO message
[RFC4960].

When the SCTP stack sets up a new association implicitly, the
SCTP_INIT type ancillary data may also be passed along (see
Section 5.3.1 for details of the data structures) to change some
parameters used in setting up a new association.

If this information is not present in the sendmsg() call, or if the
implicit association setup is triggered by a sendto() call, the
default association initialization parameters will be used. These
default association parameters may be set with respective
setsockopt() calls or be left to the system defaults.

Implicit association setup cannot be initiated by send() calls.

8. Socket Options

The following sub-section describes various SCTP level socket options
that are common to both styles. SCTP associations can be multi-
homed. Therefore, certain option parameters include a
sockaddr_storage structure to select which peer address the option
should be applied to.

For the one-to-many style sockets, an sctp_assoc_t (association
identifier) parameter is used to identify the association instance
that the operation affects. So it must be set when using this style.

For the one-to-one style sockets and branched off one-to-many style
sockets (see Section 9.2) this association ID parameter is ignored.

Note that socket or IP level options are set or retrieved per socket.

Stewart, et al. Expires April 13, 2012 [Page 61]

Internet-Draft SCTP sockets API October 2011

This means that for one-to-many style sockets, the options will be
applied to all associations (similar to using SCTP_ALL_ASSOC as the
association identifier) belonging to the socket. For one-to-one

style, these options will be applied to all peer addresses of the
association controlled by the socket. Applications should be careful

in setting those options.

For some IP stacks getsockopt() is read-only; so a new interface will
be needed when information must be passed both into and out of the
SCTP stack. The syntax for sctp_opt_info() is

int sctp_opt_info(int sd,
sctp_assoc_tid,
int opt,
void *arg,
socklen_t *size);

The sctp_opt_info() call is a replacement for getsockopt() only and

will not set any options associated with the specified socket. A
setsockopt() must be used to set any writeable option.

For one-to-many style sockets, id specifies the association to query.

For one-to-one style sockets, id is ignored. For one-to-many

sockets, any association identifier in the structure provided as arg

is ignored and id takes precedence.

Note that SCTP_CURRENT_ASSOC and SCTP_ALL_ASSOC cannot be used with
sctp_opt_info() or in getsockopt() calls. Using them will result in

an error (returning -1 and errno set to EINVAL). SCTP_FUTURE_ASSOC
can be used to query information for future associations.

The field opt specifies which SCTP socket option to get. It can get

any socket option currently supported that requests information

(either read/write options or read only) such as:

SCTP_RTOINFO

SCTP_ASSOCINFO

SCTP_PRIMARY_ADDR

SCTP_PEER_ADDR_PARAMS

SCTP_DEFAULT_SEND_PARAM

Stewart, et al. Expires April 13, 2012 [Page 62]

Internet-Draft SCTP sockets API October 2011

SCTP_MAX_SEG

SCTP_AUTH_ACTIVE_KEY

SCTP_DELAYED_SACK

SCTP_MAX_BURST

SCTP_CONTEXT

SCTP_EVENT

SCTP_DEFAULT_SNDINFO
SCTP_DEFAULT_PRINFO

SCTP_STATUS

SCTP_GET_PEER_ADDR_INFO
SCTP_PEER_AUTH_CHUNKS
SCTP_LOCAL_AUTH_CHUNKS

The arg field is an option-specific structure buffer provided by the
caller. See the rest of this sections subsections for more

information on these options and option-specific structures.

sctp_opt_info() returns 0 on success, or on failure returns -1 and
sets errno to the appropriate error code.

8.1. Read / Write Options
8.1.1. Retransmission Timeout Parameters (SCTP_RTOINFO)

The protocol parameters used to initialize and limit the
retransmission timeout (RTO) are tunable. See [RFC4960] for more
information on how these parameters are used in RTO calculation.

The following structure is used to access and modify these
parameters:

struct sctp_rtoinfo {
sctp_assoc_t srto_assoc_id;
uint32_t srto_initial;

uint32_t srto_max;

uint32_t srto_min;

g

Stewart, et al. Expires April 13, 2012 [Page 63]

Internet-Draft SCTP sockets API October 2011

srto_initial: This contains the initial RTO value.

srto_max and srto_min: These contain the maximum and minimum bounds
for all RTOs.

srto_assoc_id: This parameter is ignored for one-to-one style
sockets. For one-to-many style sockets the application may fill
in an association identifier or SCTP_FUTURE_ASSOC. ltis an error
to use SCTP_{CURRENT]ALL} _ASSOC in srto_assoc _id.

All times are given in milliseconds. A value of 0, when modifying
the parameters, indicates that the current value should not be
changed.

To access or modify these parameters, the application should call
getsockopt() or setsockopt() respectively with the option name
SCTP_RTOINFO.

8.1.2. Association Parameters (SCTP_ASSOCINFO)

This option is used to both examine and set various association and
endpoint parameters. See [RFC4960] for more information on how this
parameter is used.

The following structure is used to access and modify these
parameters:

struct sctp_assocparams {
sctp_assoc_t sasoc_assoc _id;
uint16_t sasoc_asocmaxrxt;
uintl6_t sasoc_number_peer_destinations;
uint32_t sasoc_peer_rwnd;
uint32_t sasoc_local_rwnd;
uint32_t sasoc_cookie_life;

k

sasoc_assoc_id: This parameter is ignored for one-to-one style
sockets. For one-to-many style sockets the application may fill
in an association identifier or SCTP_FUTURE_ASSOC. ltis an error
to use SCTP_{CURRENT|ALL}_ASSOC in sasoc_assoc_id.

sasoc_asocmaxrxt: This contains the maximum retransmission attempts
to make for the association.

sasoc_number_peer_destinations: This is the number of destination
addresses that the peer has.

Stewart, et al. Expires April 13, 2012 [Page 64]

Internet-Draft SCTP sockets API October 2011

sasoc_peer_rwnd: This holds the current value of the peers rwnd
(reported in the last SACK) minus any outstanding data (i.e. data
in flight).

sasoc_local_rwnd: This holds the last reported rwnd that was sent to
the peer.

sasoc_cookie_life: This is the association’s cookie life value used
when issuing cookies.

The values of the sasoc_peer_rwnd is meaningless when examining
endpoint information (i.e. it is only valid when examining
information on a specific association).

All time values are given in milliseconds. A value of 0, when
modifying the parameters, indicates that the current value should not
be changed.

The values of the sasoc_asocmaxrxt and sasoc_cookie_life may be set
on either an endpoint or association basis. The rwnd and destination
counts (sasoc_number_peer_destinations, sasoc_peer_rwnd,
sasoc_local_rwnd) are not settable and any value placed in these is
ignored.

To access or modify these parameters, the application should call
getsockopt() or setsockopt() respectively with the option name
SCTP_ASSOCINFO.

The maximum number of retransmissions before an address is considered
unreachable is also tunable, but is address-specific, so it is

covered in a separate option. If an application attempts to set the

value of the association maximum retransmission parameter to more

than the sum of all maximum retransmission parameters, setsockopt()
may return an error. The reason for this, from [RFC4960] Section

8.2:

Note: When configuring the SCTP endpoint, the user should avoid
having the value of 'Association.Max.Retrans’ (sasoc_maxrxt in this
option) larger than the summation of the 'Path.Max.Retrans’ (see
Section 8.1.12 on spp_pathmaxrxt) of all the destination addresses
for the remote endpoint. Otherwise, all the destination addresses
may become inactive while the endpoint still considers the peer
endpoint reachable.

8.1.3. Initialization Parameters (SCTP_INITMSG)

Applications can specify protocol parameters for the default
association initialization. The structure used to access and modify

Stewart, et al. Expires April 13, 2012 [Page 65]

Internet-Draft SCTP sockets API October 2011

these parameters is defined in Section 5.3.1. The option name
argument to setsockopt() and getsockopt() is SCTP_INITMSG.

Setting initialization parameters is effective only on an unconnected
socket (for one-to-many style sockets only future associations are
affected by the change).

8.1.4. SO_LINGER

An application can use this option to perform the SCTP ABORT
primitive. This option affects all associations related to the
socket.

The linger option structure is:

struct linger {
int |_onoff; /* option on/off */
int I_linger; /* linger time */

g

To enable the option, set |_onoff to 1. If the |_linger value is set

to 0, calling close() is the same as the ABORT primitive. If the
value is set to a negative value, the setsockopt() call will return

an error. If the value is set to a positive value linger_time, the
close() can be blocked for at most linger_time. Please note that the
time unit is seconds according to POSIX, but might be different on
specific platforms. If the graceful shutdown phase does not finish
during this period, close() will return but the graceful shutdown
phase will continue in the system.

Note, this is a socket level option, not an SCTP level option. When
using this option, an application must specify a level of SOL_SOCKET
in the call.

8.1.5. SCTP_NODELAY

Turn on/off any Nagle-like algorithm. This means that packets are
generally sent as soon as possible and no unnecessary delays are
introduced, at the cost of more packets in the network. In

particular, not using any Nagle-like algorithm might reduce the
bundling of small user messages in cases where this would require an
additional delay.

Turning this option on disables any Nagle-like algorithm.

This option expects an integer boolean flag, where a non-zero value
turns on the option, and a zero value turns off the option.

Stewart, et al. Expires April 13, 2012 [Page 66]

Internet-Draft SCTP sockets API October 2011

8.1.6. SO_RCVBUF

Sets the receive buffer size in octets. For SCTP one-to-one style
sockets, this controls the receiver window size. For one-to-many
style sockets the meaning is implementation dependent. It might
control the receive buffer for each association bound to the socket
descriptor or it might control the receive buffer for the whole
socket. This option expects an integer.

Note, this is a socket level option, not an SCTP level option. When
using this option, an application must specify a level of SOL_SOCKET
in the call.

8.1.7. SO_SNDBUF

Sets the send buffer size. For SCTP one-to-one style sockets, this
controls the amount of data SCTP may have waiting in internal buffers
to be sent. This option therefore bounds the maximum size of data
that can be sent in a single send call. For one-to-many style

sockets, the effect is the same, except that it applies to one or all
associations (see Section 3.3) bound to the socket descriptor used in
the setsockopt() or getsockopt() call. The option applies to each
association’s window size separately. This option expects an

integer.

Note, this is a socket level option, not an SCTP level option. When
using this option, an application must specify a level of SOL_SOCKET
in the call.

8.1.8. Automatic Close of Associations (SCTP_AUTOCLOSE)

This socket option is applicable to the one-to-many style socket

only. When set it will cause associations that are idle for more

than the specified number of seconds to automatically close using the
graceful shutdown procedure. An association being idle is defined as
an association that has not sent or received user data. The special
value of '0’ indicates that no automatic close of any association
should be performed, this is the default value. This option expects

an integer defining the number of seconds of idle time before an
association is closed.

An application using this option should enable receiving the
association change notification. This is the only mechanism an
application is informed about the closing of an association. After
an association is closed, the association identifier assigned to it
can be reused. An application should be aware of this to avoid the
possible problem of sending data to an incorrect peer endpoint.

Stewart, et al. Expires April 13, 2012 [Page 67]

Internet-Draft SCTP sockets API October 2011

8.1.9. Set Primary Address (SCTP_PRIMARY_ADDR)

Requests that the local SCTP stack uses the enclosed peer address as
the association’s primary. The enclosed address must be one of the
association peer’s addresses.

The following structure is used to make a set peer primary request:

struct sctp_setprim {
sctp_assoc_t ssp_assoc_id;
struct sockaddr_storage ssp_addr;

g

ssp_addr: The address to set as primary. No wildcard address is
allowed.

ssp_assoc_id: This parameter is ignored for one-to-one style
sockets. For one-to-many style sockets it identifies the
association for this request. Note that the special sctp_assoc_t
SCTP_{FUTURE|ALL|CURRENT}_ASSOC are not allowed.

8.1.10. Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)

Requests that the local endpoint set the specified Adaptation Layer
Indication parameter for all future INIT and INIT-ACK exchanges.

The following structure is used to access and modify this parameter:

struct sctp_setadaptation {
uint32_t ssb_adaptation_ind;

g

ssb_adaptation_ind: The adaptation layer indicator that will be
included in any outgoing Adaptation Layer Indication parameter.

8.1.11. Enable/Disable Message Fragmentation (SCTP_DISABLE_FRAGMENTS)

This option is a on/off flag and is passed as an integer where a non-
zero is on and a zero is off. If enabled no SCTP message
fragmentation will be performed. The effect of enabling this option

are that if a message being sent exceeds the current PMTU size, the
message will not be sent and instead an error will be indicated to

the user. If this option is disabled (the default) then a message
exceeding the size of the PMTU will be fragmented and reassembled by
the peer.

Stewart, et al. Expires April 13, 2012 [Page 68]

Internet-Draft SCTP sockets API October 2011

8.1.12. Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)

Applications can enable or disable heartbeats for any peer address of
an association, modify an address’s heartbeat interval, force a
heartbeat to be sent immediately, and adjust the address’s maximum
number of retransmissions sent before an address is considered
unreachable.

The following structure is used to access and modify an address’s
parameters:

struct sctp_paddrparams {
sctp_assoc_t spp_assoc_id,;
struct sockaddr_storage spp_address;
uint32_t spp_hbinterval,
uintl6_t spp_pathmaxrxt;
uint32_t spp_pathmtu;
uint32_t spp_flags;
uint32_t spp_ipv6_flowlabel;
uint8_t spp_dscp;
h

spp_assoc_id: This parameter is ignored for one-to-one style
sockets. For one-to-many style sockets the application may fill
in an association identifier or SCTP_FUTURE_ASSOC for this query.
Itis an error to use SCTP_{CURRENT|ALL} ASSOC in spp_assoc_id.

spp_address: This specifies which address is of interest. If a
wildcard address is provided it applies to all current and future
paths.

spp_hbinterval: This contains the value of the heartbeat interval,
in milliseconds (HB.Interval in [RFC4960]). Note that unless the
spp_flag is set to SPP_HB_ENABLE the value of this field is
ignored. Note also that a value of zero indicates the current
setting should be left unchanged. To set an actual value of zero
the use of the flag SPP_HB_TIME_IS_ZERO should be used. Even when
it is set to O, it does not mean that SCTP will continuously send
out heartbeat since the actual interval also includes the current
RTO and jitter (see Section 8.3 in [RFC4960]).

spp_pathmaxrxt: This contains the maximum number of retransmissions
before this address shall be considered unreachable. Note that a
value of zero indicates the current setting should be left
unchanged.

Stewart, et al. Expires April 13, 2012 [Page 69]

Internet-Draft SCTP sockets API October 2011

spp_pathmtu: The current path MTU of the peer address. lItis the
number of bytes available in an SCTP packet for chunks. Providing
a value of 0 does not change the current setting. If a positive
value is provided and SPP_PMTUD_DISABLE is set in the spp_flags,
the given value is used as the path MTU. If SPP_PMTUD_ENABLE is
set in the spp_flags, the spp_pathmtu field is ignored.

spp_ipv6_flowlabel: This field is used in conjunction with the
SPP_IPV6_FLOWLABEL flag and contains the IPv6 flowlabel. The 20
least significant bits are used for the flowlabel. This setting
has precedence over any IPv6 layer setting.

spp_dscp: This field is used in conjunction with the SPP_DSCP flag
and contains the Differentiated Services Code Point (DSCP). The 6
most significant bits are used for the DSCP. This setting has
precedence over any IPv4 or IPv6 layer setting.

spp_flags: These flags are used to control various features on an
association. The flag field is a bit mask which may contain zero
or more of the following options:

SPP_HB_ENABLE: Enable heartbeats on the specified address.

SPP_HB_DISABLE: Disable heartbeats on the specified address.
Note that SPP_HB_ENABLE and SPP_HB_DISABLE are mutually
exclusive, only one of these two should be specified. Enabling
both fields will have undetermined results.

SPP_HB_DEMAND: Request a user initiated heartbeat to be made
immediately. This must not be used in conjunction with a
wildcard address.

SPP_HB_TIME_IS_ZERO: Specifies that the time for heartbeat delay
is to be set to the value of 0 milliseconds.

SPP_PMTUD_ENABLE: This field will enable PMTU discovery upon the
specified address.

SPP_PMTUD_DISABLE: This field will disable PMTU discovery upon
the specified address. Note that if the address field is empty
then all addresses on the association are affected. Note also
that SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
exclusive. Enabling both will have undetermined results.

SPP_IPV6_FLOWLABEL: Setting this flag enables the setting of the

IPV6 flowlabel value. The value is contained in the
spp_ipv6_flowlabel field.

Stewart, et al. Expires April 13, 2012 [Page 70]

Internet-Draft SCTP sockets API October 2011

Upon retrieval, this flag will be set to indicate that the
spp_ipv6_flowlabel field has a valid value returned. If a
specific destination address is set (in the spp_address field),
then the value returned is that of the address. If just an
association is specified (and no address), then the
association’s default flowlabel is returned. If neither an
association nor a destination is specified, then the socket’s
default flowlabel is returned. For non IPv6 sockets, this flag
will be left cleared.

SPP_DSCP: Setting this flag enables the setting of the DSCP value
associated with either the association or a specific address.
The value is obtained in the spp_dscp field.

Upon retrieval, this flag will be set to indicate that the
spp_dscp field has a valid value returned. If a specific
destination address is set when called (in the spp_address
field) then that specific destination address’ DSCP value is
returned. If just an association is specified then the
association default DSCP is returned. If neither an
association nor a destination is specified, then the sockets
default DSCP is returned.

Please note that changing the flowlabel or DSCP value will affect all
packets sent by the SCTP stack after setting these parameters. The
flowlabel might also be set via the sin6_flowinfo field of the
sockaddr_in6 structure.

8.1.13. Set Default Send Parameters (SCTP_DEFAULT_SEND_PARAM) -
DEPRECATED

Please note that this options is deprecated. Section 8.1.31 should
be used instead.

Applications that wish to use the sendto() system call may wish to
specify a default set of parameters that would normally be supplied
through the inclusion of ancillary data. This socket option allows

such an application to set the default sctp_sndrcvinfo structure.

The application that wishes to use this socket option simply passes

the sctp_sndrcvinfo structure defined in Section 5.3.2 to this call.

The input parameters accepted by this call include sinfo_stream,
sinfo_flags, sinfo_ppid, sinfo_context, and sinfo_timetolive. The
sinfo_flags is composed of a bitwise OR of SCTP_UNORDERED, SCTP_EOF,
and SCTP_SENDALL. The sinfo_assoc _id field specifies the association
to apply the parameters to. For a one-to-many style socket any of

the predefined constants are also allowed in this field. The field

is ignored on the one-to-one style.

Stewart, et al. Expires April 13, 2012 [Page 71]

Internet-Draft SCTP sockets API October 2011

8.1.14. Set Notification and Ancillary Events (SCTP_EVENTS) -
DEPRECATED

This socket option is used to specify various notifications and
ancillary data the user wishes to receive. Please see Section 6.2.1
for a full description of this option and its usage. Note that this

option is considered deprecated and present for backward
compatibility. New applications should use the SCTP_EVENT option.
See Section 6.2.2 for a full description of that option as well.

8.1.15. Set/Clear IPv4 Mapped Addresses (SCTP_I_ WANT_MAPPED_V4_ ADDR)

This socket option is a boolean flag which turns on or off the

mapping of IPv4 addresses. If this option is turned on, then IPv4
addresses will be mapped to V6 representation. If this option is

turned off, then no mapping will be done of V4 addresses and a user
will receive both PF_INET6 and PF_INET type addresses on the socket.
See [RFC3542] for more details on mapped V6 addresses.

If this socket option is used on a socket of type PF_INET an error is
returned.

By default this option is turned off and expects an integer to be
passed where a non-zero value turns on the option and a zero value
turns off the option.

8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)

This option will get or set the maximum size to put in any outgoing
SCTP DATA chunk. If a message is larger than this size it will be
fragmented by SCTP into the specified size. Note that the underlying
SCTP implementation may fragment into smaller sized chunks when the
PMTU of the underlying association is smaller than the value set by

the user. The default value for this option is '0’ which indicates

the user is not limiting fragmentation and only the PMTU will affect
SCTP’s choice of DATA chunk size. Note also that values set larger
than the maximum size of an IP datagram will effectively let SCTP
control fragmentation (i.e. the same as setting this option to 0).

The following structure is used to access and modify this parameter:
struct sctp_assoc_value {

sctp_assoc_t assoc_id;
uint32_t assoc_value;

g

Stewart, et al. Expires April 13, 2012 [Page 72]

Internet-Draft SCTP sockets API October 2011

assoc_id: This parameter is ignored for one-to-one style sockets.
For one-to-many style sockets this parameter indicates which
association the user is performing an action upon. Itis an error
to use SCTP_{CURRENT|ALL} _ASSOC in assoc_id.

assoc_value: This parameter specifies the maximum size in bytes.

8.1.17. Get or Set the List of Supported HMAC Identifiers
(SCTP_HMAC_IDENT)

This option gets or sets the list of HMAC algorithms that the local
endpoint requires the peer to use.

The following structure is used to get or set these identifiers:

struct sctp_hmacalgo {
uint32_t shmac_number_of idents;
uintl6_t shmac_idents][];

g

shmac_number_of idents: This field gives the number of elements
present in the array shmac_idents.

shmac_idents: This parameter contains an array of HMAC identifiers
that the local endpoint is requesting the peer to use, in priority
order. The following identifiers are valid:

* SCTP_AUTH_HMAC_ID_SHA1
* SCTP_AUTH_HMAC_ID_SHA256

Note that the list supplied must include SCTP_AUTH_HMAC_ID_SHA1 and
may include any of the other values in its preferred order (lowest

list position has the highest preference in algorithm selection).

Note also that the lack of SCTP_AUTH_HMAC ID_SHAL, or the inclusion
of an unknown HMAC identifier (including optional identifiers unknown

to the implementation) will cause the set option to fail and return

an error.

8.1.18. Get or Set the Active Shared Key (SCTP_AUTH_ACTIVE_KEY)

This option will get or set the active shared key to be used to build
the association shared key.

The following structure is used to access and modify these
parameters:

Stewart, et al. Expires April 13, 2012 [Page 73]

Internet-Draft SCTP sockets API October 2011

struct sctp_authkeyid {
sctp_assoc_t scact_assoc_id;
uintl6_t scact_keynumber;

g

scact_assoc_id: This parameter sets the active key of the specified
association. The special SCTP_{FUTURE|CURRENT|ALL} ASSOC can be
used. For one-to-one sockets, this parameter is ignored. Note,
however, that this option will set the active key on the
association if the socket is connected, otherwise this will set
the default active key for the endpoint.

scact_keynumber: This parameter is the shared key identifier which
the application is requesting to become the active shared key to
be used for sending authenticated chunks. The key identifier must
correspond to an existing shared key. Note that shared key
identifier ‘0" defaults to a null key.

When used with setsockopt() the SCTP implementation must use the
indicated shared key identifier for all messages being given to an
SCTP implementation via a send call after the setsockopt() call until
changed again. Therefore, the SCTP implementation must not bundle
user messages which should be authenticated using different shared
key identifiers.

Initially the key with key identifier O is the active key.
8.1.19. Get or Set Delayed SACK Timer (SCTP_DELAYED_SACK)

This option will affect the way delayed sacks are performed. This
option allows the application to get or set the delayed sack time, in
milliseconds. It also allows changing the delayed sack frequency.
Changing the frequency to 1 disables the delayed sack algorithm.
Note that if sack_delay or sack_freq are 0 when setting this option,
the current values will remain unchanged.

The following structure is used to access and modify these
parameters:

struct sctp_sack_info {
sctp_assoc_t sack assoc _id;
uint32_t sack_delay;
uint32_t sack_freq;

g

Stewart, et al. Expires April 13, 2012 [Page 74]

Internet-Draft SCTP sockets API October 2011

sack_assoc_id: This parameter is ignored for one-to-one style
sockets. For one-to-many style sockets this parameter indicates
which association the user is performing an action upon. The
special SCTP_{FUTURE|CURRENT|ALL}_ASSOC can also be used.

sack _delay: This parameter contains the number of milliseconds that
the user is requesting the delayed SACK timer to be set to. Note
that this value is defined in the standard to be between 200 and
500 milliseconds.

sack_freq: This parameter contains the number of packets that must
be received before a sack is sent without waiting for the delay
timer to expire. The default value is 2, setting this value to 1
will disable the delayed sack algorithm.

8.1.20. Get or Set Fragmented Interleave (SCTP_FRAGMENT_INTERLEAVE)

Fragmented interleave controls how the presentation of messages
occurs for the message receiver. There are three levels of fragment
interleave defined. Two of the levels affect the one-to-one model,
while the one-to-many model is affected by all three levels.

This option takes an integer value. It can be set to a value of 0, 1
or 2. Attempting to set this level to other values will return an
error.

Setting the three levels provides the following receiver
interactions:

level 0: Prevents the interleaving of any messages. This means that
when a partial delivery begins, no other messages will be received
except the message being partially delivered. If another message
arrives on a different stream (or association) that could be
delivered, it will be blocked waiting for the user to read all of
the partially delivered message.

level 1: Allows interleaving of messages that are from different
associations. For the one-to-one model, level 0 and level 1 thus
have the same meaning since a one-to-one socket always receives
messages from the same association. Note that setting the one-to-
many model to this level may cause multiple partial deliveries
from different associations but for any given association, only
one message will be delivered until all parts of a message have
been delivered. This means that one large message, being read
with an association identifier of "X", will block other messages
from association "X" from being delivered.

Stewart, et al. Expires April 13, 2012 [Page 75]

Internet-Draft SCTP sockets API October 2011

level 2: Allows complete interleaving of messages. This level
requires that the sender carefully observes not only the peer
association identifier (or address) but must also pay careful
attention to the stream number. With this option enabled a
partially delivered message may begin being delivered for
association "X" stream "Y" and the next subsequent receive may
return a message from association "X" stream "Z". Note that no
other messages would be delivered for association "X" stream "Y"
until all of stream "Y™"'s partially delivered message was read.
Note that this option also affects the one-to-one model. Also
note that for the one-to-many model not only another stream’s
message from the same association may be delivered upon the next
receive, some other association’s message may be delivered upon
the next receive.

An implementation should default the one-to-many model to level 1.
The reason for this is that otherwise it is possible that a peer

could begin sending a partial message and thus block all other peers
from sending data. However a setting of level 2 requires the
application to not only be aware of the association (via the

association identifier or peer’s address) but also the stream number.
The stream number is not present unless the user has subscribed to
the sctp_data_io_event (see Section 6.2), which is deprecated, or has
enabled the SCTP_RECVRCVINFO socket option (see Section 8.1.29).
This is also why we recommend that the one-to-one model be defaulted
to level O (level 1 for the one-to-one model has no effect). Note

that an implementation should return an error if an application

attempts to set the level to 2 and has not subscribed to the
sctp_data_io_event event, which is deprecated, or has enabled the
SCTP_RECVRCVINFO socket option.

For applications that have subscribed to events, those events appear
in the normal socket buffer data stream. This means that unless the
user has set the fragmentation interleave level to 0, notifications

may also be interleaved with partially delivered messages.

8.1.21. Set or Get the SCTP Partial Delivery Point
(SCTP_PARTIAL_DELIVERY_POINT)

This option will set or get the SCTP partial delivery point. This
point is the size of a message where the partial delivery APl will be
invoked to help free up rwnd space for the peer. Setting this to a
lower value will cause partial deliveries to happen more often. This
option expects an integer that sets or gets the partial delivery

point in bytes. Note also that the call will fail if the user

attempts to set this value larger than the socket receive buffer

size.

Stewart, et al. Expires April 13, 2012 [Page 76]

Internet-Draft SCTP sockets API October 2011

Note that any single message having a length smaller than or equal to
the SCTP partial delivery point will be delivered in one single read

call as long as the user provided buffer is large enough to hold the
message.

8.1.22. Set or Get the Use of Extended Receive Info
(SCTP_USE_EXT_RCVINFO) - DEPRECATED

This option will enable or disable the use of the extended version of
the sctp_sndrcvinfo structure. If this option is disabled, then the
normal sctp_sndrcvinfo structure is returned in all receive message
calls. If this option is enabled then the sctp_extrcvinfo structure

is returned in all receive message calls. The default is off.

Note that the sctp_extrcvinfo structure is never used in any send
call.

This option is present for compatibility with older applications and
is deprecated. Future applications should use SCTP_NXTINFO to
retrieve this same information via ancillary data.

8.1.23. Set or Get the Auto ASCONF Flag (SCTP_AUTO_ASCONF)

This option will enable or disable the use of the automatic
generation of ASCONF chunks to add and delete addresses to an
existing association. Note that this option has two caveats namely:
a) it only affects sockets that are bound to all addresses available
to the SCTP stack, and b) the system administrator may have an
overriding control that turns the ASCONF feature off no matter what
setting the socket option may have.

This option expects an integer boolean flag, where a non-zero value
turns on the option, and a zero value turns off the option.

8.1.24. Set or Get the Maximum Burst (SCTP_MAX_BURST)

This option will allow a user to change the maximum burst of packets
that can be emitted by this association. Note that the default value
is 4, and some implementations may restrict this setting so that it
can only be lowered to positive values.

To set or get this option the user fills in the following structure:
struct sctp_assoc_value {

sctp_assoc_t assoc_id;
uint32_t assoc_value;

g

Stewart, et al. Expires April 13, 2012 [Page 77]

Internet-Draft SCTP sockets API October 2011

assoc_id: This parameter is ignored for one-to-one style sockets.
For one-to-many style sockets this parameter indicates which
association the user is performing an action upon. The special
SCTP_{FUTURE|CURRENT|ALL}_ASSOC can also be used.

assoc_value: This parameter contains the maximum burst. Setting the
value to O disables burst mitigation.

8.1.25. Set or Get the Default Context (SCTP_CONTEXT)

The context field in the sctp_sndrcvinfo structure is normally only
used when a failed message is retrieved holding the value that was
sent down on the actual send call. This option allows the setting of

a default context on an association basis that will be received on
reading messages from the peer. This is especially helpful in the
one-to-many model for an application to keep some reference to an
internal state machine that is processing messages on the
association. Note that the setting of this value only affects

received messages from the peer and does not affect the value that is
saved with outbound messages.

To set or get this option the user fills in the following structure:

struct sctp_assoc_value {
sctp_assoc_t assoc_id;
uint32_t assoc_value;

g

assoc_id: This parameter is ignored for one-to-one style sockets.
For one-to-many style sockets this parameter indicates which
association the user is performing an action upon. The special
SCTP_{FUTURE|CURRENTJALL} ASSOC can also be used.

assoc_value: This parameter contains the context.
8.1.26. Enable or Disable Explicit EOR Marking (SCTP_EXPLICIT_EOR)

This boolean flag is used to enable or disable explicit end of record
(EOR) marking. When this option is enabled, a user may make multiple
send system calls to send a record and must indicate that they are
finished sending a particular record by including the SCTP_EOR flag.

If this boolean flag is disabled then each individual send system

call is considered to have an SCTP_EOR indicator set on it implicitly
without the user having to explicitly add this flag. The default is

off.

This option expects an integer boolean flag, where a non-zero value
turns on the option, and a zero value turns off the option.

Stewart, et al. Expires April 13, 2012 [Page 78]

Internet-Draft SCTP sockets API October 2011

8.1.27. Enable SCTP Port Reusage (SCTP_REUSE_PORT)

This option only supports one-to-one style SCTP sockets. If used on
a one-to-many style SCTP socket an error is indicated.

This option expects an integer boolean flag, where a non-zero value
turns on the option, and a zero value turns off the option.

This socket option must not be used after calling bind() or

sctp_bindx() for a one-to-one style SCTP socket. If using bind() or
sctp_bindx() on a socket with the SCTP_REUSE_PORT option, all other
SCTP sockets bound to the same port must have set the
SCTP_REUSE_PORT. Calling bind() or sctp_bindx() for a socket without
having set the SCTP_REUSE_PORT option will fail if there are other
sockets bound to the same port. At most one socket being bound to

the same port may be listening.

It should be noted that the behavior of the socket level socket
option to reuse ports and/or addresses for SCTP sockets is
unspecified.

8.1.28. Set Natification Event (SCTP_EVENT)
This socket option is used to set a specific notification option.
Please see Section 6.2.2 for a full description of this option and
its usage.

8.1.29. Enable or Disable the Delivery of SCTP_RCVINFO as Ancillary
Data (SCTP_RECVRCVINFO)

Setting this option specifies that SCTP_RCVINFO defined in
Section 5.3.5 is returned as ancillary data by recvmsg().

This option expects an integer boolean flag, where a non-zero value
turns on the option, and a zero value turns off the option.

8.1.30. Enable or Disable the Delivery of SCTP_NXTINFO as Ancillary
Data (SCTP_RECVNXTINFO)

Setting this option specifies that SCTP_NXTINFO defined in
Section 5.3.6 is returned as ancillary data by recvmsg().

This option expects an integer boolean flag, where a non-zero value
turns on the option, and a zero value turns off the option.

Stewart, et al. Expires April 13, 2012 [Page 79]

Internet-Draft SCTP sockets API October 2011

8.1.31. Set Default Send Parameters (SCTP_DEFAULT_SNDINFO)

Applications that wish to use the sendto() system call may wish to
specify a default set of parameters that would normally be supplied
through the inclusion of ancillary data. This socket option allows

such an application to set the default sctp_sndinfo structure. The
application that wishes to use this socket option simply passes the
sctp_sndinfo structure defined in Section 5.3.4 to this call. The

input parameters accepted by this call include snd_sid, snd_flags,
snd_ppid, snd_context. The snd_flags is composed of a bitwise OR of
SCTP_UNORDERED, SCTP_EOF, and SCTP_SENDALL. The snd_assoc_id field
specifies the association to apply the parameters to. For a one-to-
many style socket any of the predefined constants are also allowed in
this field. The field is ignored on the one-to-one style.

8.1.32. Set Default PR-SCTP Parameters (SCTP_DEFAULT_PRINFO)

This option sets and gets the default parameters for PR-SCTP. They
can be overwritten by specific information provided in send calls.

The following structure is used to access and modify these
parameters:

struct sctp_default_prinfo {
uintl6_t pr_policy;
uint32_t pr_value;
sctp_assoc_t pr_assoc_id;

}l
pr_policy: Same as described in Section 5.3.7.
pr_value: Same as described in Section 5.3.7.
pr_assoc_id: This field is ignored for one-to-one style sockets.
For one-to-many style sockets pr_assoc_id can be a particular
association identifier or SCTP_{FUTURE|CURRENT|ALL} ASSOC.
8.2. Read-Only Options
The options defined in this subsection are read-only. Using this
option in a setsockopt() call will result in an error indicating
EOPNOTSUPP.
8.2.1. Association Status (SCTP_STATUS)
Applications can retrieve current status information about an

association, including association state, peer receiver window size,
number of unacknowledged data chunks, and number of data chunks

Stewart, et al. Expires April 13, 2012 [Page 80]

Internet-Draft SCTP sockets API

pending receipt. This information is read-only.

October 2011

The following structure is used to access this information:

struct sctp_status {
sctp_assoc_t sstat_assoc_id;
int32_t sstat_state;
uint32_t sstat_rwnd;
uintl6_t sstat_unackdata;
uintl6_t sstat_penddata;
uintl6_t sstat_instrms;
uintl6_t sstat outstrms;
uint32_t sstat_fragmentation_point;
struct sctp_paddrinfo sstat_primary;

h

sstat_assoc_id: This parameter is ignored for one-to-one style
sockets. For one-to-many style sockets it holds the identifier
for the association. All notifications for a given association
have the same association identifier. The special SCTP_{FUTURE]|

CURRENTIALL}_ASSOC cannot be used.

sstat_state: This contains the association’s current state, i.e. one
of the following values:

*

SCTP_CLOSED
SCTP_BOUND

SCTP_LISTEN
SCTP_COOKIE_WAIT
SCTP_COOKIE_ECHOED
SCTP_ESTABLISHED
SCTP_SHUTDOWN_PENDING
SCTP_SHUTDOWN_SENT
SCTP_SHUTDOWN_RECEIVED

SCTP_SHUTDOWN_ACK_SENT

Stewart, et al. Expires April 13, 2012

[Page 81]

Internet-Draft SCTP sockets API October 2011

sstat_rwnd: This contains the association peer’s current receiver
window size.

sstat_unackdata: This is the number of unacknowledged data chunks.
sstat_penddata: This is the number of data chunks pending receipt.

sstat_instrms: The number of streams that the peer will be using
outbound.

sstat_outstrms: The number of streams that the endpoint is allowed
to use outbound.

sstat_fragmentation_point: The size at which SCTP fragmentation will
occur.

sstat_primary: This is information on the current primary peer
address.

To access these status values, the application calls getsockopt()
with the option name SCTP_STATUS.

8.2.2. Peer Address Information (SCTP_GET_PEER_ADDR_INFO)

Applications can retrieve information about a specific peer address
of an association, including its reachability state, congestion
window, and retransmission timer values. This information is read-
only.

The following structure is used to access this information:

struct sctp_paddrinfo {
sctp_assoc_t spinfo_assoc_id;
struct sockaddr_storage spinfo_address;
int32_t spinfo_state;
uint32_t spinfo_cwnd;
uint32_t spinfo_srtt;
uint32_t spinfo_rto;
uint32_t spinfo_mtu;

k

spinfo_assoc_id: This parameter is ignored for one-to-one style
sockets. For one-to-many style sockets the following applies:
This field may be filled by the application, if so, this field
will have priority in looking up the association instead of using
the address specified in spinfo_address. Note that if the address
does not belong to the association specified then this call will
fail. If the application does not fill in the spinfo_assoc _id,

Stewart, et al. Expires April 13, 2012 [Page 82]

Internet-Draft SCTP sockets API October 2011

then the address will be used to lookup the association and on
return this field will have the valid association identifier. In

other words, this call can be used to translate an address into an
association identifier. Note that the predefined constants are
not allowed on this option.

spinfo_address: This is filled by the application, and contains the
peer address of interest.

spinfo_state: This contains the peer address’ state:
SCTP_UNCONFIRMED: The initial state of a peer address.

SCTP_ACTIVE: The state is entered the first time after path
verification. It can also be entered if the state is
SCTP_INACTIVE and the path supervision detects that the peer
address is reachable again.

SCTP_INACTIVE: This state is entered whenever a path failure is
detected.

spinfo_cwnd: This contains the peer address’ current congestion
window.

spinfo_srtt: This contains the peer address’ current smoothed round-
trip time calculation in milliseconds.

spinfo_rto: This contains the peer address’ current retransmission
timeout value in milliseconds.

spinfo_mtu: The current path MTU of the peer address. It is the
number of bytes available in an SCTP packet for chunks.

8.2.3. Get the List of Chunks the Peer Requires to be Authenticated
(SCTP_PEER_AUTH_CHUNKS)

This option gets a list of chunk types (see [RFC4960]) for a
specified association that the peer requires to be received
authenticated only.

The following structure is used to access these parameters:

struct sctp_authchunks {
sctp_assoc_t gauth_assoc_id;
uint32_t gauth_number_of chunks
uint8_t gauth_chunks];

h

Stewart, et al. Expires April 13, 2012 [Page 83]

Internet-Draft SCTP sockets API October 2011

gauth_assoc_id: This parameter indicates for which association the
user is requesting the list of peer authenticated chunks. For
one-to-one sockets, this parameter is ignored. Note that the
predefined constants are not allowed with this option.

gauth_number_of _chunks: This parameter gives the number of elements
in the array gauth_chunks.

gauth_chunks: This parameter contains an array of chunk types that
the peer is requesting to be authenticated. If the passed in
buffer size is not large enough to hold the list of chunk types,
ENOBUFS is returned.

8.2.4. Get the List of Chunks the Local Endpoint Requires to be
Authenticated (SCTP_LOCAL_AUTH_CHUNKS)

This option gets a list of chunk types (see [RFC4960]) for a
specified association that the local endpoint requires to be received
authenticated only.

The following structure is used to access these parameters:

struct sctp_authchunks {
sctp_assoc_t gauth_assoc_id;
uint32_t gauth_number_of chunks;
uint8_t gauth_chunks];

%

gauth_assoc_id: This parameter is ignored for one-to-one style
sockets. For one-to-many style sockets the application may fill
in an association identifier or SCTP_FUTURE_ASSOC. ltis an error
to use SCTP_{CURRENT]ALL} ASSOC in gauth_assoc _id.

gauth_number_of _chunks: This parameter gives the number of elements
in the array gauth_chunks.

gauth_chunks: This parameter contains an array of chunk types that
the local endpoint is requesting to be authenticated. If the
passed in buffer is not large enough to hold the list of chunk
types, ENOBUFS is returned.

8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)

This option gets the current number of associations that are attached

to a one-to-many style socket. The option value is an uint32_t.

Note that this number is only a snap shot. This means that the

number of associations may have changed when the caller gets back the
option result.

Stewart, et al. Expires April 13, 2012 [Page 84]

Internet-Draft SCTP sockets API October 2011

For a one-to-one style socket, this socket option results in an
error.

8.2.6. Get the Current Identifiers of Associations
(SCTP_GET_ASSOC_ID_LIST)

This option gets the current list of SCTP association identifiers of
the SCTP associations handled by a one-to-many style socket.

The option value has the structure

struct sctp_assoc_ids {
uint32_t gaids_number_of _ids;
sctp_assoc_t gaids_assoc_id[];

g

The caller must provide a large enough buffer to hold all association
identifiers. If the buffer is too small, an error must be returned.

The user can use the SCTP_GET_ASSOC_NUMBER socket option to get an
idea how large the buffer has to be. gaids_number_of _ids gives the

number of elements in the array gaids_assoc_id. Note also that some

or all of sctp_assoc _t returned in the array may become invalid by

the time the caller gets back the result.

For a one-to-one style socket, this socket option results in an
error.

8.3. Write-Only Options
The options defined in this subsection are write-only. Using this
option in a getsockopt() or sctp_opt_info() call will result in an
error indicating EOPNOTSUPP.

8.3.1. Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
Requests that the peer marks the enclosed address as the association
primary (see [RFC5061]). The enclosed address must be one of the
association’s locally bound addresses.

The following structure is used to make a set peer primary request:
struct sctp_setpeerprim {

sctp_assoc_t sspp_assoc_id;
struct sockaddr_storage sspp_addr;

g

Stewart, et al. Expires April 13, 2012 [Page 85]

Internet-Draft SCTP sockets API October 2011

sspp_assoc_id: This parameter is ignored for one-to-one style
sockets. For one-to-many style sockets it identifies the
association for this request. Note that the predefined constants
are not allowed on this option.

sspp_addr: The address to set as primary.
8.3.2. Add a Chunk that must be Authenticated (SCTP_AUTH_CHUNK)

This set option adds a chunk type that the user is requesting to be
received only in an authenticated way. Changes to the list of chunks
will only affect future associations on the socket.

The following structure is used to add a chunk:

struct sctp_authchunk {
uint8_t sauth_chunk;

g

sauth_chunk: This parameter contains a chunk type that the user is
requesting to be authenticated.

The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE, and AUTH
chunks must not be used. If they are used, an error must be

returned. The usage of this option enables SCTP AUTH in cases where

it is not required by other means (for example the use of dynamic

address reconfiguration).

8.3.3. Set a Shared Key (SCTP_AUTH_KEY)

This option will set a shared secret key that is used to build an
association shared key.

The following structure is used to access and modify these
parameters:

struct sctp_authkey {
sctp_assoc_t sca_assoc_id;
uintl6_t sca_keynumber;
uintl6_t sca_keylength;
uint8_t sca_keyf[];

h

sca_assoc_id: This parameter indicates what association the shared
key is being set upon. The special SCTP_{FUTURE|CURRENT]|
ALL} ASSOC can be used. For one-to-one sockets, this parameter is
ignored. Note, however on one to one sockets, that this option
will set a key on the association if the socket is connected,

Stewart, et al. Expires April 13, 2012 [Page 86]

Internet-Draft SCTP sockets API October 2011

otherwise this will set a key on the endpoint.

sca_keynumber: This parameter is the shared key identifier by which
the application will refer to this shared key. If a key of the
specified index already exists, then this new key will replace the
old existing key. Note that shared key identifier '0’ defaults to
a null key.

sca_keylength: This parameter is the length of the array sca_key.

sca_key: This parameter contains an array of bytes that is to be
used by the endpoint (or association) as the shared secret key.
Note, if the length of this field is zero, a null key is set.

8.3.4. Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)

This set option indicates that the application will no longer send
user messages using the indicated key identifier.

struct sctp_authkeyid {
Sctp_assoc_t scact_assoc_id;
uintl6_t scact_keynumber;

g

scact_assoc_id: This parameter indicates which association the
shared key identifier is being deleted from. The special
SCTP_{FUTURE|CURRENTJALL} ASSOC can be used. For one-to-one
sockets, this parameter is ignored. Note, however, that this
option will deactivate the key from the association if the socket
is connected, otherwise this will deactivate the key from the
endpoint.

scact_keynumber: This parameter is the shared key identifier which
the application is requesting to be deactivated. The key
identifier must correspond to an existing shared key. Note if
this parameter is zero, use of the null key identifier 0’ is
deactivated on the endpoint and/or association.

The currently active key cannot be deactivated.
8.3.5. Delete a Shared Key (SCTP_AUTH_DELETE_KEY)

This set option will delete a shared secret key which has been
deactivated of an SCTP association.

struct sctp_authkeyid {

sctp_assoc_t scact_assoc_id;
uintl6_t scact_keynumber;

Stewart, et al. Expires April 13, 2012 [Page 87]

Internet-Draft SCTP sockets API October 2011

%

scact_assoc_id: This parameter indicates which association the
shared key identifier is being deleted from. The special
SCTP_{FUTURE|CURRENTJALL} ASSOC can be used. For one-to-one
sockets, this parameter is ignored. Note, however, that this
option will delete the key from the association if the socket is
connected, otherwise this will delete the key from the endpoint.

scact_keynumber: This parameter is the shared key identifier which
the application is requesting to be deleted. The key identifier
must correspond to an existing shared key and must not be in use
for any packet being sent by the SCTP implementation. This means
in particular, that it must be deactivated first. Note if this
parameter is zero, use of the null key identifier '0" is deleted
from the endpoint and/or association.

Only deactivated keys that are no longer used by an association can
be deleted.

9. New Functions

Depending on the system, the following interface can be implemented
as a system call or library function.

9.1. sctp_bindx()

This function allows the user to bind a specific subset of addresses
or, if the SCTP extension described in [RFC5061] is supported, add or
delete specific addresses.

The function prototype is

int sctp_bindx(int sd,
struct sockaddr *addrs,
int addrcnt,
int flags);

If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
If the sd is an IPv6 socket, the addresses passed can either be IPv4
or IPv6 addresses.

A single address may be specified as INADDR_ANY or INGADDR_ANY, see
Section 3.1.2 for this usage.

addrs is a pointer to an array of one or more socket addresses. Each
address is contained in its appropriate structure. For an IPv6

Stewart, et al. Expires April 13, 2012 [Page 88]

Internet-Draft SCTP sockets API October 2011

socket, an array of sockaddr_in6 is used. For a IPv4 socket, an

array of sockaddr_in is used. The caller specifies the number of
addresses in the array with addrcnt. Note that the wildcard

addresses cannot be used in combination with non wildcard addresses
on a socket with this function, doing so will result in an error.

On success, sctp_hindx() returns 0. On failure, sctp_bindx() returns
-1 and sets errno to the appropriate error code.

For SCTP, the port given in each socket address must be the same, or
sctp_bindx() will fail, setting errno to EINVAL.

The flags parameter is formed from the bitwise OR of zero or more of
the following currently defined flags:

o SCTP_BINDX_ADD_ADDR
o SCTP_BINDX_REM_ADDR

SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
socket (i.e. endpoint), and SCTP_BINDX_REM_ADDR directs SCTP to
remove the given addresses from the socket. The two flags are

mutually exclusive; if both are given, sctp_bindx() will fail with

EINVAL. A caller may not remove all addresses from a socket;
sctp_bindx() will reject such an attempt with EINVAL.

An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
additional addresses with an endpoint after calling bind(). Or use
sctp_bindx(SCTP_BINDX_ REM_ADDR) to remove some addresses a listening
socket is associated with, so that no new association accepted will

be associated with these addresses. If the endpoint supports dynamic
address reconfiguration, an SCTP_BINDX_REM_ADDR or
SCTP_BINDX_ADD_ADDR may cause an endpoint to send the appropriate
message to its peers to change the peers’ address lists.

Adding and removing addresses from established associations is an
optional functionality. Implementations that do not support this
functionality should return -1 and set errno to EOPNOTSUPP.

sctp_bindx() can be called on an already bound socket or on an
unbound socket. If the socket is unbound and the first port number
in the addrs is zero, the kernel will choose a port number. All port
numbers after the first one being 0 must also be zero. If the first
port number is not zero, the following port numbers must be zero or
have the same value as the first one. For an already bound socket,
all port numbers provided must be the bound one or 0.

sctp_bindx() is an atomic operation. Therefore, the binding will be

Stewart, et al. Expires April 13, 2012 [Page 89]

Internet-Draft SCTP sockets API October 2011

either successful on all addresses or fail on all addresses. |If
multiple addresses are provided and the sctp_bindx() call fails there
is no indication which address is responsible for the failure. The
only way to identify the specific error indication is to call
sctp_bindx() sequentially with only one address per call.

9.2. sctp_peeloff()

After an association is established on a one-to-many style socket,
the application may wish to branch off the association into a
separate socket/file descriptor.

This is particularly desirable when, for instance, the application

wishes to have a number of sporadic message senders/receivers remain
under the original one-to-many style socket, but branch off these
associations carrying high volume data traffic into their own

separate socket descriptors.

The application uses the sctp_peeloff() call to branch off an
association into a separate socket (Note the semantics are somewhat
changed from the traditional one-to-one style accept() call). Note

that the new socket is a one-to-one style socket. Thus it will be
confined to operations allowed for a one-to-one style socket.

The function prototype is

int sctp_peeloff(int sd,
sctp_assoc_t assoc_id);

and the arguments are

sd: The original one-to-many style socket descriptor returned from
the socket() system call (see Section 3.1.1).

assoc_id: the specified identifier of the association that is to be
branched off to a separate file descriptor (Note, in a traditional
one-to-one style accept() call, this would be an out parameter,
but for the one-to-many style call, this is an in parameter).

The function returns a non-negative file descriptor representing the

branched-off association, or -1 if an error occurred. The variable

errno is then set appropriately.

9.3. sctp_getpaddrs()
sctp_getpaddrs() returns all peer addresses in an association.

The function prototype is:

Stewart, et al. Expires April 13, 2012 [Page 90]

Internet-Draft SCTP sockets API October 2011

int sctp_getpaddrs(int sd,
sctp_assoc_tid,
struct sockaddr **addrs);

On return, addrs will point to a dynamically allocated array of
sockaddr structures of the appropriate type for the socket type. The
caller should use sctp_freepaddrs() to free the memory. Note that
the in/out parameter addrs must not be NULL.

If sd is an IPv4 socket, the addresses returned will be all IPv4
addresses. If sd is an IPv6 socket, the addresses returned can be a
mix of IPv4 or IPv6 addresses, with IPv4 addresses returned according
to the SCTP_I_WANT_MAPPED_V4_ADDR option setting.

For one-to-many style sockets, id specifies the association to query.
For one-to-one style sockets, id is ignored.

On success, sctp_getpaddrs() returns the number of peer addresses in
the association. If there is no association on this socket,
sctp_getpaddrs() returns 0, and the value of *addrs is undefined. If
an error occurs, sctp_getpaddrs() returns -1, and the value of *addrs
is undefined.

9.4. sctp_freepaddrs()
sctp_freepaddrs() frees all resources allocated by sctp_getpaddrs().
The function prototype is
void sctp_freepaddrs(struct sockaddr *addrs);

and addrs is the array of peer addresses returned by
sctp_getpaddrs().

9.5. sctp_getladdrs()
sctp_getladdrs() returns all locally bound address(es) on a socket.
The function prototype is
int sctp_getladdrs(int sd,
sctp_assoc_tid,
struct sockaddr **addrs);
On return, addrs will point to a dynamically allocated array of
sockaddr structures of the appropriate type for the socket type. The

caller should use sctp_freeladdrs() to free the memory. Note that
the in/out parameter addrs must not be NULL.

Stewart, et al. Expires April 13, 2012 [Page 91]

Internet-Draft SCTP sockets API October 2011

If sd is an IPv4 socket, the addresses returned will be all IPv4
addresses. If sd is an IPv6 socket, the addresses returned can be a
mix of IPv4 or IPv6 addresses, with IPv4 addresses returned according
to the SCTP_I_WANT_MAPPED_V4 ADDR option setting.

For one-to-many style sockets, id specifies the association to query.
For one-to-one style sockets, id is ignored.

If the id field is set to the value "0’ then the locally bound
addresses are returned without regard to any particular association.

On success, sctp_getladdrs() returns the number of local addresses
bound to the socket. If the socket is unbound, sctp_getladdrs()
returns 0, and the value of *addrs is undefined. If an error occurs,
sctp_getladdrs() returns -1, and the value of *addrs is undefined.

9.6. sctp_freeladdrs()
sctp_freeladdrs() frees all resources allocated by sctp_getladdrs().
The function prototype is
void sctp_freeladdrs(struct sockaddr *addrs);

and addrs is the array of local addresses returned by
sctp_getladdrs().

9.7. sctp_sendmsg() - DEPRECATED

This function is deprecated, sctp_sendv() (see Section 9.12) should
be used instead.

An implementation may provide a library function (or possibly system
call) to assist the user with the advanced features of SCTP.

The function prototype is

ssize_t sctp_sendmsg(int sd,
const void *msg,
size tlen,
const struct sockaddr *to,
socklen_t tolen,
uint32_t ppid,
uint32_t flags,
uintl6_t stream_no,
uint32_t timetolive,
uint32_t context);

Stewart, et al. Expires April 13, 2012 [Page 92]

Internet-Draft SCTP sockets API October 2011

and the arguments are:

sd: The socket descriptor.

msg: The message to be sent.

len: The length of the message.

to: The destination address of the message.

tolen: The length of the destination address.

ppid: The same as sinfo_ppid (see Section 5.3.2).

flags: The same as sinfo_flags (see Section 5.3.2).
stream_no: The same as sinfo_stream (see Section 5.3.2).
timetolive: The same as sinfo_timetolive (see Section 5.3.2).
context: The same as sinfo_context (see Section 5.3.2).

The call returns the number of characters sent, or -1 if an error
occurred. The variable errno is then set appropriately.

Sending a message using sctp_sendmsg() is atomic (unless explicit EOR
marking is enabled on the socket specified by sd).

Using sctp_sendmsg() on a non-connected one-to-one style socket for
implicit connection setup may or may not work depending on the SCTP
implementation.

9.8. sctp_recvmsg() - DEPRECATED

This function is deprecated, sctp_recvv() (see Section 9.13) should
be used instead.

An implementation may provide a library function (or possibly system
call) to assist the user with the advanced features of SCTP. Note

that in order for the sctp_sndrcvinfo structure to be filled in by
sctp_recvmsg() the caller must enable the sctp_data_io_event with the
SCTP_EVENTS option. Note that the setting of the
SCTP_USE_EXT_RCVINFO will affect this function as well, causing the
sctp_sndrcvinfo information to be extended.

The function prototype is

Stewart, et al. Expires April 13, 2012 [Page 93]

Internet-Draft SCTP sockets API October 2011

ssize_t sctp_recvmsg(int sd,
void *msg,
size_tlen,
struct sockaddr *from,
socklen_t *fromlen
struct sctp_sndrcvinfo *sinfo
int *msg_flags);

and the arguments are

sd: The socket descriptor.

msg: The message buffer to be filled.
len: The length of the message buffer.

from: A pointer to an address to be filled with the sender of this
messages address.

fromlen: An in/out parameter describing the from length.

sinfo: A pointer to an sctp_sndrcvinfo structure to be filled upon
receipt of the message.

msg_flags: A pointer to an integer to be filled with any message
flags (e.g. MSG_NOTIFICATION). Note that this field is an in-out
field. Options for the receive may also be passed into the value
(e.g. MSG_PEEK). On return from the call, the msg_flags value
will be different than what was sent in to the call. If
implemented via a recvmsg() call, the msg_flags should only
contain the value of the flags from the recvmsg() call.

The call returns the number of bytes received, or -1 if an error
occurred. The variable errno is then set appropriately.

9.9. sctp_connectx()

An implementation may provide a library function (or possibly system
call) to assist the user with associating to an endpoint that is
multi-homed. Much like sctp_bindx() this call allows a caller to
specify multiple addresses at which a peer can be reached. The way
the SCTP stack uses the list of addresses to set up the association

is implementation dependent. This function only specifies that the
stack will try to make use of all the addresses in the list when
needed.

Note that the list of addresses passed in is only used for setting up
the association. It does not necessarily equal the set of addresses

Stewart, et al. Expires April 13, 2012 [Page 94]

Internet-Draft SCTP sockets API October 2011

the peer uses for the resulting association. If the caller wants to
find out the set of peer addresses, it must use sctp_getpaddrs() to
retrieve them after the association has been set up.
The function prototype is
int sctp_connectx(int sd,
struct sockaddr *addrs,
int addrent,
sctp_assoc_t *id);
and the arguments are:
sd: The socket descriptor.
addrs: An array of addresses.
addrcnt: The number of addresses in the array.
id: An output parameter that if passed in as a non-NULL will return
the association identifier for the newly created association (if

successful).

The call returns 0 on success or -1 if an error occurred. The
variable errno is then set appropriately.

9.10. sctp_send() - DEPRECATED

This function is deprecated, sctp_sendv() should be used instead.
An implementation may provide another alternative function or system
call to assist an application with the sending of data without the
use of the CMSG header structures.
The function prototype is
ssize_t sctp_send(int sd,

const void *msg,

size_tlen,

const struct sctp_sndrcvinfo *sinfo,

int flags);

and the arguments are

sd: The socket descriptor.

Stewart, et al. Expires April 13, 2012 [Page 95]

Internet-Draft SCTP sockets API October 2011

msg: The message to be sent.
len: The length of the message.

sinfo: A pointer to an sctp_sndrcvinfo structure used as described
in Section 5.3.2 for a sendmsg() call.

flags: The same flags as used by the sendmsg() call flags (e.g.
MSG_DONTROUTE).

The call returns the number of bytes sent, or -1 if an error
occurred. The variable errno is then set appropriately.

This function call may also be used to terminate an association using
an association identifier by setting the sinfo.sinfo_flags to

SCTP_EOF and the sinfo.sinfo_assoc_id to the association that needs
to be terminated. In such a case the len of the message can be zero.

Using sctp_send() on a non-connected one-to-one style socket for
implicit connection setup may or may not work depending on the SCTP
implementation.

Sending a message using sctp_send() is atomic unless explicit EOR
marking is enabled on the socket specified by sd.

9.11. sctp_sendx() - DEPRECATED
This function is deprecated, sctp_sendv() should be used instead.

An implementation may provide another alternative function or system
call to assist an application with the sending of data without the

use of the CMSG header structures that also gives a list of
addresses. The list of addresses is provided for implicit

association setup. In such a case the list of addresses serves the
same purpose as the addresses given in sctp_connectx() (see
Section 9.9).

The function prototype is

ssize_t sctp_sendx(int sd,
const void *msg,
size_tlen,
struct sockaddr *addrs,
int addrent,
struct sctp_sndrcvinfo *sinfo,
int flags);

and the arguments are:

Stewart, et al. Expires April 13, 2012 [Page 96]

Internet-Draft SCTP sockets API October 2011

sd: The socket descriptor.

msg: The message to be sent.

len: The length of the message.

addrs: Is an array of addresses.

addrcent: The number of addresses in the array.

sinfo: A pointer to an sctp_sndrcvinfo structure used as described
in Section 5.3.2 for a sendmsg() call.

flags: The same flags as used by the sendmsg() call flags (e.g.
MSG_DONTROUTE).

The call returns the number of bytes sent, or -1 if an error
occurred. The variable errno is then set appropriately.

Note that in case of implicit connection setup, on return from this
call the sinfo_assoc _id field of the sinfo structure will contain the
new association identifier.

This function call may also be used to terminate an association using
an association identifier by setting the sinfo.sinfo_flags to

SCTP_EOF and the sinfo.sinfo_assoc _id to the association that needs
to be terminated. In such a case the len of the message would be
zero.

Sending a message using sctp_sendx() is atomic unless explicit EOR
marking is enabled on the socket specified by sd.

Using sctp_sendx() on a non-connected one-to-one style socket for
implicit connection setup may or may not work depending on the SCTP
implementation.

9.12. sctp_sendv()
The function prototype is

ssize_t sctp_sendv(int sd,
const struct iovec *iov,
int iovent,
struct sockaddr *addrs,
int addrent,
void *info,
socklen_t infolen,
unsigned int infotype,

Stewart, et al. Expires April 13, 2012 [Page 97]

Internet-Draft SCTP sockets API October 2011

int flags);

The function sctp_sendv() provides an extensible way for an
application to communicate different send attributes to the SCTP
stack when sending a message. An implementation may provide
sctp_sendv() as a library function or a system call.

This document defines three types of attributes which can be used to
describe a message to be sent. They are struct sctp_sndinfo

(Section 5.3.4), struct sctp_prinfo (Section 5.3.7), and struct
sctp_authinfo (Section 5.3.8). The following structure

sctp_sendv_spa is defined to be used when more than one of the above
attributes are needed to describe a message to be sent.

struct sctp_sendv_spa {

uint32_t sendv_flags;

struct sctp_sndinfo sendv_sndinfo;
struct sctp_prinfo sendv_prinfo;
struct sctp_authinfo sendv_authinfo;

%
The sendv_flags field holds a bit wise OR of SCTP_SEND_SNDINFO_VALID,
SCTP_SEND_PRINFO_VALID and SCTP_SEND_AUTHINFO_VALID indicating if the
sendv_sndinfo/sendv_prinfo/sendv_authinfo fields contain valid

information.

In future, when new send attributes are needed, new structures can be

defined. But those new structures do not need to be based on any of

the above defined structures.

The function takes the following arguments:

sd: The socket descriptor.

iov: The gather buffer. The data in the buffer is treated as one
single user message.

iovent: The number of elements in iov.

addrs: An array of addresses to be used to set up an association or
one single address to be used to send the message. Pass in NULL
if the caller does not want to set up an association nor want to
send the message to a specific address.

addrcent: The number of addresses in the addrs array.

Stewart, et al. Expires April 13, 2012 [Page 98]

Internet-Draft SCTP sockets API October 2011

info: A pointer to the buffer containing the attribute associated
with the message to be sent. The type is indicated by the
info_type parameter.

infolen: The length in bytes of info.

infotype: ldentifies the type of the information provided in info.
The current defined values are:

SCTP_SENDV_NOINFO: No information is provided. The parameter
info is a NULL pointer and infolen is 0.

SCTP_SENDV_SNDINFO: The parameter info is pointing to a struct
sctp_sndinfo.

SCTP_SENDV_PRINFO: The parameter info is pointing to a struct
sctp_prinfo.

SCTP_SENDV_AUTHINFO: The parameter info is pointing to a struct
sctp_authinfo.

SCTP_SENDV_SPA: The parameter info is pointing to a struct
sctp_sendv_spa.

flags: The same flags as used by the sendmsg() call flags (e.qg.
MSG_DONTROUTE).

The call returns the number of bytes sent, or -1 if an error
occurred. The variable errno is then set appropriately.

A note on one-to-many style socket. The struct sctp_sndinfo
attribute must always be used in order to specify the association the
message is to be sent on. The only case where it is not needed is
when this call is used to set up a new association.

The caller provides a list of addresses in the addrs parameter to set
up an association. This function will behave like calling
sctp_connectx() (see Section 9.9) first using the list of addresses
and then calling sendmsg() with the given message and attributes.
For an one-to-many style socket, if struct sctp_sndinfo attribute is
provided, the snd_assoc _id field must be 0. When this function
returns, the snd_assoc_id field will contain the association

identifier of the newly established association. Note that struct
sctp_sndinfo attribute is not required to set up an association for
one-to-many style socket. If this attribute is not provided, the

caller can enable the SCTP_ASSOC_CHANGE naotification and use the
SCTP_COMM_UP message to find out the association identifier.

Stewart, et al. Expires April 13, 2012 [Page 99]

Internet-Draft SCTP sockets API October 2011

If the caller wants to send the message to a specific peer address
(hence overriding the primary address), it can provide the specific
address in the addrs parameter and provide a struct sctp_sndinfo
attribute with the field snd_flags set to SCTP_ADDR_OVER.

This function call may also be used to terminate an association. The
caller provides an sctp_sndinfo attribute with the snd_flags set to
SCTP_EOF. In this case the len of the message would be zero.

Sending a message using sctp_sendyv() is atomic unless explicit EOR
marking is enabled on the socket specified by sd.

9.13. sctp_recvv()
The function prototype is

ssize_t sctp_recvv(int sd,
const struct iovec *iov,
int iovlen,
struct sockaddr *from,
socklen_t *fromlen,
void *info,
socklen_t *infolen,
unsigned int *infotype,
int *flags);

The function sctp_recvv() provides an extensible way for the SCTP
stack to pass up different SCTP attributes associated with a received
message to an application. An implementation may provide
sctp_recvv() as a library function or as a system call.

This document defines two types of attributes which can be returned

by this call, the attribute of the received message and the attribute

of the next message in receive buffer. The caller enables the
SCTP_RECVRCVINFO and SCTP_RECVNXTINFO socket option to receive these
attributes respectively. Attributes of the received message are

returned in struct sctp_rcvinfo (Section 5.3.5) and attributes of the

next message are returned in struct sctp_nxtinfo (Section 5.3.6). If

both options are enabled, both attributes are returned using the

following structure.

struct sctp_recvv_rn {
struct sctp_rcvinfo recvv_rcvinfo;
struct sctp_nxtinfo recvv_nxtinfo;

g

In future, new structures can be defined to hold new types of
attributes. The new structures do not need to be based on struct

Stewart, et al. Expires April 13, 2012 [Page 100]

Internet-Draft SCTP sockets API October 2011

sctp_recvv_rn or struct sctp_rcvinfo.
This function takes the following arguments:
sd: The socket descriptor.

iov: The scatter buffer. Only one user message is returned in this
buffer.

iovlen: The number of elements in iov.

from: A pointer to an address to be filled with the sender of the
received message’s address.

fromlen: An in/out parameter describing the from length.

info: A pointer to the buffer to hold the attributes of the received
message. The structure type of info is determined by the
info_type parameter.

infolen: An in/out parameter describing the size of the info buffer.

infotype: In return, *info_type is set to the type of the info
buffer. The current defined values are:

SCTP_RECVV_NOINFO: If both SCTP_RECVRCVINFO and SCTP_RECVNXTINFO
options are not enabled, no attribute will be returned. If
only the SCTP_RECVNXTINFO option is enabled but there is no
next message in the buffer, there will also no attribute be
returned. In these cases *info_type will be set to
SCTP_RECVV_NOINFO.

SCTP_RECVV_RCVINFO: The type of info is struct sctp_rcvinfo and
the attribute is about the received message.

SCTP_RECVV_NXTINFO: The type of info is struct sctp_nxtinfo and
the attribute is about the next message in receive buffer.
This is the case when only the SCTP_RECVNXTINFO option is
enabled and there is a next message in buffer.

SCTP_RECVV_RN: The type of info is struct sctp_recvv_rn. The
recvv_rcvinfo field is the attribute of the received message
and the recvv_nxtinfo field is the attribute of the next
message in buffer. This is the case when both SCTP_RECVRCVINFO
and SCTP_RECVNXTINFO options are enabled and there is a next
message in the receive buffer.

Stewart, et al. Expires April 13, 2012 [Page 101]

Internet-Draft SCTP sockets API October 2011

flags: A pointer to an integer to be filled with any message flags
(e.g. MSG_NOTIFICATION). Note that this field is an in/out
parameter. Options for the receive may also be passed into the
value (e.g. MSG_PEEK). On return from the call, the flags value
will be different than what was sent in to the call. If
implemented via a recvmsg() call, the flags should only contain
the value of the flags from the recvmsg() call when calling
sctp_recvv() and on return it has the value from msg_flags.

The call returns the number of bytes received, or -1 if an error
occurred. The variable errno is then set appropriately.

10. IANA Considerations

This document requires no actions from IANA.

11. Security Considerations

Many TCP and UDP implementations reserve port numbers below 1024 for
privileged users. If the target platform supports privileged users,

the SCTP implementation should restrict the ability to call bind() or
sctp_bindx() on these port numbers to privileged users.

Similarly unprivileged users should not be able to set protocol
parameters that could result in the congestion control algorithm
being more aggressive than permitted on the public Internet. These
parameters are:

0 struct sctp_rtoinfo

If an unprivileged user inherits a one-to-many style socket with open
associations on a privileged port, it may be permitted to accept new
associations, but it should not be permitted to open new
associations. This could be relevant for the r* family of protocols.

Applications using the one-to-many style sockets and using the
interleave level if 0 are subject to denial of service attacks as
described in Section 8.1.20.

Applications needing transport layer security can use DTLS/SCTP as

specified in [RFC6083]. This can be implemented using the socket API
described in this document.

Stewart, et al. Expires April 13, 2012 [Page 102]

Internet-Draft SCTP sockets API October 2011

12. Acknowledgments

Special acknowledgment is given to Ken Fujita, Jonathan Woods,
Qiaobing Xie, and La Monte Yarroll, who helped extensively in the
early formation of this document.

The authors also wish to thank Kavitha Baratakke, Mike Bartlett,
Martin Becke, Jon Berger, Mark Butler, Thomas Dreibholz, Andreas
Fink, Scott Kimble, Jonathan Leighton, Renee Revis, Irene Ruengeler,
Dan Wing, and many others on the TSVWG mailing list for contributing
valuable comments.

A special thanks to Phillip Conrad, for his suggested text, quick and
constructive insights, and most of all his persistent fighting to
keep the interface to SCTP usable for the application programmer.

13. References
13.1. Normative References

[[EEE-1003.1-2008]
Institute of Electrical and Electronics Engineers,
"Information Technology - Portable Operating System
Interface (POSIX)", IEEE Standard 1003.1, 2008.

[RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
Stevens, "Basic Socket Interface Extensions for IPv6",
RFC 3493, February 2003.

[RFC3542] Stevens, W., Thomas, M., Nordmark, E., and T. Jinmei,
"Advanced Sockets Application Program Interface (API) for
IPv6", RFC 3542, May 2003.

[RFC3758] Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.
Conrad, "Stream Control Transmission Protocol (SCTP)
Partial Reliability Extension", RFC 3758, May 2004.

[RFC4895] Tuexen, M., Stewart, R., Lei, P., and E. Rescorla,
"Authenticated Chunks for the Stream Control Transmission
Protocol (SCTP)", RFC 4895, August 2007.

[RFC4960] Stewart, R., "Stream Control Transmission Protocol",
RFC 4960, September 2007.

[RFC5061] Stewart, R., Xie, Q., Tuexen, M., Maruyama, S., and M.

Kozuka, "Stream Control Transmission Protocol (SCTP)
Dynamic Address Reconfiguration", RFC 5061,

Stewart, et al. Expires April 13, 2012 [Page 103]

Internet-Draft SCTP sockets API October 2011

September 2007.
13.2. Informative References

[RFCO0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

[RFCO768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
August 1980.

[RFC1644] Braden, B., "T/TCP -- TCP Extensions for Transactions
Functional Specification”, RFC 1644, July 1994.

[RFC6083] Tuexen, M., Seggelmann, R., and E. Rescorla, "Datagram
Transport Layer Security (DTLS) for Stream Control
Transmission Protocol (SCTP)", RFC 6083, January 2011.

Appendix A. One-to-One Style Code Example

The following code is an implementation of a simple client which

sends a number of messages marked for unordered delivery to an echo

server making use of all outgoing streams. The example shows how to

use some features of one-to-one style IPv4 SCTP sockets, including:

o0 Creating and connecting an SCTP socket.

0 Requesting to negotiate a number of outgoing streams.

o Determining the negotiated number of outgoing streams.

0 Setting an adaptation layer indication.

o Sending messages with a given payload protocol identifier on a

particular stream using sctp_sendv().

/*

Copyright (c) 2011 IETF Trust and the persons identified
as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with

or without modification, is permitted pursuant to, and subject

to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust’s Legal Provisions
Relating to IETF Documents (http://trustee.ietf.org/license-info).

Stewart, et al. Expires April 13, 2012 [Page 104]

Internet-Draft SCTP sockets API October 2011

*/

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/sctp.h>
#include <arpa/inet.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

#define PORT 9

#define ADDR "127.0.0.1"

#define SIZE_OF_MESSAGE 1000
#define NUMBER_OF MESSAGES 10
#define PPID 1234

int

main(void) {
unsigned int i;
int sd;
struct sockaddr_in addr;
char buffer[SIZE_OF_MESSAGE];
struct iovec iov;
struct sctp_status status;
struct sctp_initmsg init;
struct sctp_sndinfo info;
struct sctp_setadaptation ind;
socklen_t opt_len;

/* Create a one-to-one style SCTP socket. */

if ((sd = socket(AF_INET, SOCK_STREAM, IPPROTO_SCTP)) < 0) {
perror("socket™);
exit(1);

/* Prepare for requesting 2048 outgoing streams. */
memset(&init, 0, sizeof(init));
init.sinit_num_ostreams = 2048;
if (setsockopt(sd, IPPROTO_SCTP, SCTP_INITMSG,
&init, (socklen_t)sizeof(init)) < 0) {
perror("setsockopt™);
exit(1);
}

ind.ssb_adaptation_ind = 0x01020304;
if (setsockopt(sd, IPPROTO_SCTP, SCTP_ADAPTATION_LAYER,

Stewart, et al. Expires April 13, 2012 [Page 105]

Internet-Draft SCTP sockets API October 2011

&ind, (socklen_t)sizeof(ind)) < 0) {
perror("setsockopt™);
exit(1);

[* Connect to the discard server. */
memset(&addr, 0, sizeof(addr));
#ifdef HAVE_SIN_LEN

addr.sin_len = sizeof(struct sockaddr_in);
#endif

addr.sin_family = AF_INET;

addr.sin_port = htons(PORT);

addr.sin_addr.s_addr = inet_addr(ADDR);
if (connect(sd,
(const struct sockaddr *)&addr,
sizeof(struct sockaddr_in)) < 0) {
perror(“connect");
exit(1);

/* Get the actual number of outgoing streams. */
memset(&status, 0, sizeof(status));
opt_len = (socklen_t)sizeof(status);
if (getsockopt(sd, IPPROTO_SCTP, SCTP_STATUS,
&status, &opt_len) < 0) {
perror("getsockopt");
exit(1);

memset(&info, 0, sizeof(info));
info.snd_ppid = htonl(PPID);
info.snd_flags = SCTP_UNORDERED;
memset(buffer, 'A’, SIZE_OF_MESSAGE);
iov.iov_base = buffer;
iov.iov_len = SIZE_OF_MESSAGE;
for (i=0;i< NUMBER_OF_MESSAGES; i++) {
info.snd_sid = i % status.sstat_outstrms;
if (sctp_sendv(sd,
(const struct iovec *)&iov, 1,
NULL, O,
&info, sizeof(info), SCTP_SENDV_SNDINFO,
0)<0){
perror("sctp_sendv");
exit(1);
}
}

if (close(sd) < 0) {

Stewart, et al. Expires April 13, 2012 [Page 106]

Internet-Draft SCTP sockets API October 2011

perror(“close");
exit(1);

return(0);

Appendix B. One-to-Many Style Code Example

The following code is a simple implementation of a discard server
over SCTP. The example shows how to use some features of one-to-many
style IPv6 SCTP sockets, including:

0 Opening and binding of a socket.

o Enabling natifications.

o Handling notifications.

o Configuring the auto close timer.

0 Using sctp_recvv() to receive messages.

Please note that this server can be used in combination with the
client described in Appendix A.

/*

Copyright (c) 2011 IETF Trust and the persons identified
as authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with

or without modification, is permitted pursuant to, and subject

to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust’s Legal Provisions
Relating to IETF Documents (http://trustee.ietf.org/license-info).

*

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/sctp.h>
#include <arpa/inet.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

Stewart, et al. Expires April 13, 2012 [Page 107]

Internet-Draft SCTP sockets API October 2011

#define BUFFER_SIZE (1<<16)
#define PORT 9

#define ADDR "0.0.0.0"

#define TIMEOUT 5

static void

print_notification(void *buf)

{
struct sctp_assoc_change *sac;
struct sctp_paddr_change *spc;
struct sctp_adaptation_event *sad;
union sctp_natification *snp;
char addrbuf[INET6_ADDRSTRLEN];
const char *ap;
struct sockaddr_in *sin;
struct sockaddr_in6 *sin6;

snp = buf;

switch (snp->sn_header.sn_type) {
case SCTP_ASSOC_CHANGE:
sac = &snp->sn_assoc_change;
printf("~ Association change: ");
switch (sac->sac_state) {
case SCTP_COMM_UP:
printf("Communication up (streams (in/out)=(%u/%u)).\n",
sac->sac_inbound_streams, sac->sac_outbound_streams);
break;
case SCTP_COMM_LOST:
printf("Communication lost (error=%d).\n", sac->sac_error);
break;
case SCTP_RESTART:
printf("Communication restarted (streams (in/out)=(%u/%u).\n",
sac->sac_inbound_streams, sac->sac_outbound_streams);
break;
case SCTP_SHUTDOWN_COMP:
printf("Communication completed.\n");
break;
case SCTP_CANT_STR_ASSOC:
printf("Communication couldn’t be started.\n");
break;
default:
printf("Unknown state: %d.\n", sac->sac_state);
break;
}
break;
case SCTP_PEER_ADDR_CHANGE:
spc = &snp->sn_paddr_change;

Stewart, et al. Expires April 13, 2012 [Page 108]

Internet-Draft SCTP sockets API October 2011

if (spc->spc_aaddr.ss_family == AF_INET) {
sin = (struct sockaddr_in *)&spc->spc_aaddr;
ap = inet_ntop(AF_INET, &sin->sin_addr,
addrbuf, INET6_ADDRSTRLEN);
}else {
sin6 = (struct sockaddr_in6 *)&spc->spc_aaddr;
ap = inet_ntop(AF_INET®6, &sin6->sin6_addr,
addrbuf, INET6_ADDRSTRLEN);

printf("*~ Peer Address change: %s ", ap);
switch (spc->spc_state) {
case SCTP_ADDR_AVAILABLE:
printf("is available.\n");
break;
case SCTP_ADDR_UNREACHABLE:
printf("is not available (error=%d).\n", spc->spc_error);
break;
case SCTP_ADDR_REMOVED:
printf("was removed.\n");
break;
case SCTP_ADDR_ADDED:
printf("was added.\n");
break;
case SCTP_ADDR_MADE_PRIM:
printf("is primary.\n");
break;
default:
printf("unknown state (%d).\n", spc->spc_state);
break;
}
break;
case SCTP_SHUTDOWN_EVENT:
printf("" Shutdown received.\n");
break;
case SCTP_ADAPTATION_INDICATION:
sad = &snp->sn_adaptation_event;
printf("~ Adaptation indication 0x%08x received.\n",
sad->sai_adaptation_ind);
break;
default:
printf("~ Unknown event of type: %u.\n",
snp->sn_header.sn_type);
break;
h
}

int
main(void) {

Stewart, et al. Expires April 13, 2012 [Page 109]

Internet-Draft SCTP sockets API October 2011

int sd, flags, timeout, on;
ssize tn;
unsigned int i;
union {
struct sockaddr sa;
struct sockaddr_in sin;
struct sockaddr_in6 sin6;
} addr;
socklen_t fromlen, infolen;
struct sctp_rcvinfo info;
unsigned int infotype;
struct iovec iov;
char buffer[BUFFER_SIZE];
struct sctp_event event;
uintl6_t event_types[] = {SCTP_ASSOC_CHANGE,
SCTP_PEER_ADDR_CHANGE,
SCTP_SHUTDOWN_EVENT,
SCTP_ADAPTATION_INDICATION};

/* Create a 1-to-many style SCTP socket. */

if ((sd = socket(AF_INET6, SOCK_SEQPACKET, IPPROTO_SCTP)) < 0) {
perror("socket™);
exit(1);

}

/* Enable the events of interest. */
memset(&event, 0, sizeof(event));
event.se_assoc_id = SCTP_FUTURE_ASSOC;
event.se_on =1;
for (i = 0; i < sizeof(event_types)/sizeof(uintl6 _t); i++) {
event.se_type = event_types]i];
if (setsockopt(sd, IPPROTO_SCTP, SCTP_EVENT,
&event, sizeof(event)) < 0) {
perror("setsockopt");
exit(1);
}
}
/* Configure auto-close timer. */
timeout = TIMEOUT;
if (setsockopt(sd, IPPROTO_SCTP, SCTP_AUTOCLOSE,
&timeout, sizeof(timeout)) < 0) {
perror("setsockopt SCTP_AUTOCLOSE");
exit(1);
}

[* Enable delivery of SCTP_RCVINFO. */
on=1,;

Stewart, et al. Expires April 13, 2012 [Page 110]

Internet-Draft SCTP sockets API October 2011

if (setsockopt(sd, IPPROTO_SCTP, SCTP_RECVRCVINFO,
&on, sizeof(on)) < 0) {
perror("setsockopt SCTP_RECVRCVINFO");
exit(1);

/* Bind the socket to all local addresses. */
memset(&addr, 0, sizeof(addr));
#ifdef HAVE_SIN6_LEN

addr.sin6.sin6_len = sizeof(addr.sin6);
#endif

addr.sin6.sin6_family = = AF_INETS6;

addr.sin6.sin6_port = htons(PORT);

addr.sin6.sin6_addr = in6addr_any;

if (bind(sd, &addr.sa, sizeof(addr.sin6)) < 0) {
perror("bind");
exit(1);

/* Enable accepting associations. */
if (listen(sd, 1) < 0) {
perror(“listen™);
exit(1);

for (;;) {
flags = 0;
memset(&addr, 0, sizeof(addr));
fromlen = (socklen_t)sizeof(addr);
memset(&info, 0, sizeof(info));
infolen = (socklen_t)sizeof(info);
infotype = 0;
iov.iov_base = buffer;
iov.iov_len = BUFFER_SIZE;

n = sctp_recvv(sd, &iov, 1,
&addr.sa, &fromlen,
&info, &infolen, &infotype,
&flags);

if (flags & MSG_NOTIFICATION) {
print_notification(iov.iov_base);
}else {
char addrbuf[INET6_ADDRSTRLEN];
const char *ap;
in_port_t port;

if (addr.sa.sa_family == AF_INET) {
ap = inet_ntop(AF_INET, &addr.sin.sin_addr,

Stewart, et al. Expires April 13, 2012 [Page 111]

Internet-Draft SCTP sockets API October 2011

addrbuf, INET6_ADDRSTRLEN);
port = ntohs(addr.sin.sin_port);
}else {
ap = inet_ntop(AF_INET6, &addr.sin6.sin6_addr,
addrbuf, INET6_ADDRSTRLEN);
port = ntohs(addr.sin6.sin6_port);

printf("Message received from %s:%u: len=%d",
ap, port, (int)n);
switch (infotype) {
case SCTP_RECVV_RCVINFO:
printf(", sid=%u", info.rcv_sid);
if (info.rcv_flags & SCTP_UNORDERED) {
printf(", unordered");
}else {
printf(", ssn=%u", info.rcv_ssn);

printf(", tsn=%u", info.rcv_tsn);
printf(", ppid=%u.\n", ntohl(info.rcv_ppid));
break;
case SCTP_RECVV_NOINFO:
case SCTP_RECVV_NXTINFO:
case SCTP_RECVV_RN:
printf(".\n");
break;
default:
printf(" unknown infotype.\n");

}

}

if (close(sd) < 0) {
perror(“close™);
exit(1);

}

return (0);
}

Stewart, et al. Expires April 13, 2012

[Page 112]

Internet-Draft SCTP sockets API

Authors’ Addresses

Randall R. Stewart
Adara Networks
Chapin, SC 29036
USA

Email: randall@lakerest.net

Michael Tuexen

Muenster University of Applied Sciences
Stegerwaldstr. 39

48565 Steinfurt

Germany

Email: tuexen@fh-muenster.de

Kacheong Poon
Oracle Corporation

Email: ka-cheong.poon@oracle.com

Peter Lei

Cisco Systems, Inc.
9501 Technology Blvd
West Office Center
Rosemont, IL 60018
USA

Email: peterlei@cisco.com
Vladislav Yasevich

HP

110 Spitrook Rd

Nashua, NH 03062

USA

Email: vladislav.yasevich@hp.com

Stewart, et al. Expires April 13, 2012

October 2011

[Page 113]

TSVWG WG James Polk

Internet-Draft Subha Dhesikan
Expires: September 14, 2011 Cisco Systems
Intended Status: Standards Track (PS) March 14, 2011

Updates: RFC 2205, 2210, & 4495 (if published as an RFC)

Integrated Services (IntServ) Extension to Allow Signaling of Multiple
Traffic Specifications and Multiple Flow Specifications in RSVPv1
draft-polk-tsvwg-intserv-multiple-tspec-06

Abstract

This document defines extensions to Integrated Services (IntServ)
allowing multiple traffic specifications and multiple flow

specifications to be conveyed in the same Resource Reservation
Protocol (RSVPv1) reservation message exchange. This ability helps
optimize an agreeable bandwidth through a network between endpoints
in a single round trip.

Legal

This documents and the information contained therein are provided on

an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE
IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with
the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents
at any time. Itis inappropriate to use Internet-Drafts as

reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on September 14, 2011.

Polk & Dhesikan Expires September 14, 2011 [Page 1]

Internet-Draft IntServ MULTI_TSPEC Mar 2011

Copyright Notice

Copyright (¢) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this
document must include Simplified BSD License text as described in
Section 4.e of the Trust Legal Provisions and are provided without
warranty as described in the BSD License.

Table of Contents

1. Introduction 3
2. Overview of the Proposal for including multiple TSPECs and
FLOWSPECs 6
3. Multi_TSPEC and MULTI_FLOWSPEC Solution........... 8
3.1 New MULTI_TSPEC and MULTI-RSPEC Parameters 9
3.2 Multiple TSPEC ina PATH Message 9
3.3 Multiple FLOWSPEC for Controlled Load Service 12
3.4 Multiple FLOWSPEC for Guaranteed Service 14
4. RulesofUsage 17
4.1 Backward Compatibility 17
4.2 Applies to Only a Single Session 17
4.3 No Special Error Handling for PATH Message 17
4.4 Preference Order to be Maintained 18
4.5 Bandwidth Reduction in Downstream Routers 18
4.6 MergingRules 19
4.7 Applicability to Multicast 19
4.8 MULTI_TSPEC SpecificError 20
4.9 Other Considerations 20
410 Known Openlssues 21
5. Security considerations 21
6. IANA considerations 22
7. Acknowledgments 22
8. References 22
8.1. Normative References 23
8.2. Informative References 23
Authors’ Addresses 23
Appendix A. Alternatives for Sending Multiple TSPECs. 23

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC 2119].

Polk & Dhesikan Expires September 14, 2011 [Page 2]

Internet-Draft IntServ MULTI_TSPEC Mar 2011
1. Introduction

This document defines how Integrated Services (IntServ) [RFC2210]
includes multiple traffic specifications and multiple flow
specifications in the same Resource Reservation Protocol (RSVPv1)
[RFC2205] message. This ability helps optimize an agreeable
bandwidth through a network between endpoints in a single round
trip.

There is a separation of function between RSVP and IntServ, in
which RSVP does not define the internal objects to establish
controlled load or guarantee services. These are generally left to
be opaque in RSVP. At the same time, IntServ does not require
that RSVP be the only reservation protocol for transporting both
the controlled load or guaranteed service objects - but RSVP does
often carry the objects anyway. This makes the two independent -
yet related in usage, but are also frequently talked about as if
they are one and the same. They are not.

The traffic specification’ contains the traffic characteristics of

a sender’s data flow and is a required object in a PATH message. The
TSPEC object is defined in RFC 2210 to convey the traffic
specification from the sender and is opaque to RSVP. The ADSPEC
object - for "advertising specification’ - is used to gather

information along the downstream data path to aid the receiver in

the computation of QoS properties of this data path. The ADSPEC is
also opaque to RSVP and is defined in RFC 2210. Both of these
IntServ objects are part of the Sender Descriptor [RFC2205].

Once the Sender Descriptor is received at its destination node,

after having traveled through the network of routers, the
SENDER_TSPEC information is matched with the information gathered in
the ADSPEC, if present, about the data path. Together, these two

objects help the receiver build its flow specification (encoded in

the FLOWSPEC object) for the RESV message. The RESV message
establishes the reservation through the network of routers on the

data path established by the PATH message. If the ADSPEC is not
present in the Sender_Descriptor, it cannot aid the receiver in

building the flow specification.

The SENDER_TSPEC is not changed in transit between endpoints (i.e.,
there are no bandwidth request adjustments along the way). However,
the ADSPEC is changed, based on the conditions experienced through
the network (i.e., bandwidth availability within each router) as the

RSVP message travels hop-by-hop.

Today, real-time applications have evolved such that they are able
to dynamically adapt to available bandwidth, not only by dropping
and adding layers, but also by reducing frame rates and resolution.
It is therefore limiting to have a single bandwidth request in
Integrated Services, and by extension, RSVP.

Polk & Dhesikan Expires September 14, 2011 [Page 3]

Internet-Draft IntServ MULTI_TSPEC Mar 2011

With only one traffic specification in a PATH message and only one
flow specification in a RESV message (with some styles of
reservations a RESV message may actually contain multiple flow
specifications, but then there is only one per sender), applications
will either have to give up altogether on session establishment in
case of failure of the reservation establishment for the highest
"bandwidth or will have to resort to multiple successive RSVP
signaling attempts in a trial-and-error manner until they finally
establish the reservation a lower "bandwidth". These multiple
signaling round-trip would affect the session establishment time and
in turn would negatively impact the end user experience.

The objective of this document is to avoid such roundtrips as well
as allow applications to successfully receive some level of
bandwidth allotment that it can use for its sessions.

While the ADSPEC provides an indication of the bandwidth available
along the path and can be used by the receiver in creating the
FLOWSPEC, it does not prevent failures or multiple round-trips as
described above. The intermediary routers provide a best attempt
estimate of available bandwidth in the ADSPEC object. However, it
does not take into account external policy considerations

(RFC 2215). In addition, the available bandwidth at the time of
creating the ADSPEC may not be available at the time of an actual
request in an RESV message. These reasons may cause the RESV message
to be rejected. Therefore, the ADSPEC object cannot, by itself,
satisfy the requirements of the current generations of real-time
applications.

It needs to be noted that the ADSPEC is unchanged by this new
mechanism. If ADSPEC is included in the PATH message, it is
suggested that the receiver use this object in determining

the flow specification.

This document creates a means for conveying more than one
"bandwidth" within the same RSVP reservation set-up (both PATH and
RESV) messages to optimize the determination of an agreed upon
bandwidth for this reservation. Allowing multiple traffic

specifications within the same PATH message allows the sender to
communicate to the receiver multiple "bandwidths" that match the
different sending rates that the sender is capable of transmitting

at. This allows the receiver to convey this multiple "bandwidths"

in the RESV so those can be considered when RSVP makes the actual
reservation admission into the network. This allows the applications

to dynamically adapt their data stream to available network

resources.

The concept of RSVP signaling is shown in a single direction below,

in Figure 1. Although the TSPEC is opaque to RSVP, it is shown

along with the RSVP messages for completeness. The RSVP messages
themselves need not be the focus of the reader. Instead, the

number of round trips it takes to establish a reservation is the

Polk & Dhesikan Expires September 14, 2011 [Page 4]

Internet-Draft IntServ MULTI_TSPEC Mar 2011

focus here.

Sender Rtr-1 Rtr-2 ... Rtr-N Receiver

I I I I
PATH (with a TSPEC & ADSPEC) |

Figure 1. Concept of RSVP in a Single Direction

Figure 1 shows a successful one-way reservation using RSVP and
IntServ.

Figure 2 shows a scenario where the RESV message, containing a
FLOWSPEC, which is generated by the Receiver, after considering

both the Sender TSPEC and the ADSPEC, is rejected by an intermediary
router.

Sender Rtr-1 Rtr-2 ... Rtr-N Receiver

I I
PATH (with 1 TSPEC wanting 12Mbps) |
>| >|-mmff > >|

I
I
I
I I I

| | D |
I

I

I

I

Figure 2. Concept of RSVP Rejection due to Limited Bandwidth

The scenario above is where multiple TSPEC and multiple FLOWSPEC
optimization helps. The Sender may support multiple bandwidths

for a given application (i.e., more than one codec for voice or

video) and therefore might want to establish a reservation with the
highest (or best) bandwidth that the network can provide for a
particular codec.

For example, bandwidths of:
12Mbps,
4Mbps, and
1.5Mbps

for the three video codecs the Sender supports.

Polk & Dhesikan Expires September 14, 2011 [Page 5]

Internet-Draft IntServ MULTI_TSPEC Mar 2011

This document will discuss the overview of the proposal to include
multiple TSPECs and FLOWSPECs RSVP in section 2. In section 3, the
overview of the entire solution is provided. This section also

contains the new parameters which are defined in this document. The
multiple TSPECs in a PATH message and the multiple FLOWSPEC in a
RESV message, both for controlled load and guaranteed service are
described in this section. Section 4 will cover the rules of usage

of this IntServ extension. This section contains how this document
needs to extend the scenario of when a router in the middle of a
reservation cannot accept a preferred bandwidth (i.e., FLOWSPEC),
meaning previous routers that accepted that greater bandwidth now
have too much bandwidth reserved. This requires an extension to RFC
4495 (RSVP Bandwidth Reduction) to cover reservations being
established, as well as existing reservations. Section 4 also

includes the merging rules.

2. Overview of Proposal for Including Multiple TSPECs and FLOWSPECS

Presently, this is the format of a PATH message [RFC2205]:
<PATH Message> ::= <Common Header> [<INTEGRITY>]
<SESSION> <RSVP_HOP>
<TIME_VALUES>
[<POLICY_DATA> ...]
[<sender descriptor>]

<sender descriptor> ::= <SENDER_TEMPLATE> <SENDER_TSPEC>

NNNNNNNNNNNN

[<ADSPEC>]

where the SENDER_TSPEC object contains a single traffic
specification.

For the PATH message, the focus of this document is to modify the
<sender_descriptor> in such a way to include more than one traffic
specification. This solution does this by retaining the existing
SENDER_TSPEC object above, highlighted by the '“*" characters, and
complementing it with a new optional MULTI_TSPEC object to convey
additional traffic specifications in this PATH message. No other

object within the PATH message is affected by this IntServ

extension.

This extension modifies the sender descriptor by specifically

augmenting it to allow an optional <MULTI_TSPEC> object after the
optional <ADSPEC>, as shown below.

Polk & Dhesikan Expires September 14, 2011 [Page 6]

Internet-Draft IntServ MULTI_TSPEC Mar 2011
<sender descriptor> ::= <SENDER_TEMPLATE> <SENDER_TSPEC>

[<ADSPEC>] [<MULTI_TSPEC>]

NANNNNNNNNNN

As can be seen above, the MULTI_TSPEC is in addition to the
SENDER_TSPEC - and is only to be used, per this extension, when
more than one TSPEC is to be included in the PATH message.

Here is another way of looking at the proposal choices:

Existing TSPEC |

Additional TSPECs |

MULTI_TSPEC | |
Object | |

+-— — — — ——— +
+— " +

Figure 3. Encoding of Multiple Traffic Specifications in
the TSPEC and MULTI_TSPEC objects

This solution is backwards compatible with existing implementations

of [RFC2205] and [RFC2210], as the multiple TSPECs and FLOWSPECs are
inserted as optional objects and such objects do not need to be

processed, especially if they are not understood.

This solution defines a similar approach for encoding multiple flow

specifications in the RESV message. Flow specifications beyond the
first one can be encoded in a new "MULTI_FLOWSPEC" object contained

Polk & Dhesikan Expires September 14, 2011 [Page 7]

Internet-Draft IntServ MULTI_TSPEC Mar 2011
in the RESV message.

In this proposal, the original SENDER_TSPEC and the FLOWSPEC are
left untouched, allowing routers not supporting this extension to

process the PATH and the RESV message without issue. Two new
additional objects are defined in this document. They are the
MULTI_TSPEC and the MULTI_FLOWSPEC for the PATH and the RESV
message, respectively. The additional TSPECs (in the new MULTI_TSPEC
Object) are included in the PATH and the additional FLOWSPECS (in

the new MULTI_FLOWSPEC Obiject) are included in the RESV message as
new (optional) objects. These additional objects will have a class

number of 11bbbbbb, allowing older routers to ignore the object(s)

and forward each unexamined and unchanged, as defined in section

3.10 of [RFC 2205].

NOTE: it is important to emphasize here that including more than
one FLOWSPEC in the RESV message does not cause more than one
FLOWSPEC to be granted. This document requires that the
receiver arrange these multiple FLOWSPECSs in the order of
preference according to the order remaining from the
MULTI_TSPECs in the PATH message. The benefit of this
arrangement is that RSVP does not have to process the rest of
the FLOWSPEC if it can admit the first one.

3. Multi_TSPEC and MULTI_FLOWSPEC Solution

For the Sender Descriptor within the PATH message, the original
TSPEC remains where it is, and is untouched by this IntServ
extension. What is new is the use of a new <MULTI_TSPEC> object
inside the sender descriptor as shown here:
<sender descriptor> ::= <SENDER_TEMPLATE> <SENDER_TSPEC>

[<ADSPEC>] [<MULTI_TSPEC>]

NANNNNNNNNNN

The preferred order of TSPECs sent by the sender is this:
- preferred TSPEC is in the original SENDER_TSPEC

- the next in line preferred TSPEC is the first TSPEC in the
MULTI_TSPEC object

- the next in line preferred TSPEC is the second TSPEC in the
MULTI_TSPEC object

- and so on...
The composition of the flow descriptor list in a Resv message

depends upon the reservation style. Therefore, the following shows

Polk & Dhesikan Expires September 14, 2011 [Page 8]

Internet-Draft IntServ MULTI_TSPEC Mar 2011
the inclusion of the MULTI_FLOWSPEC object with each of the styles:

WEF Style:
<flow descriptor list> ::= <WF flow descriptor>

<WF flow descriptor> ::= <FLOWSPEC> [MULTI_FLOWSPEC]

FF style:
<flow descriptor list> ::=

<FLOWSPEC> <FILTER_SPEC> [MULTI_FLOWSPEC] |
<flow descriptor list> <FF flow descriptor>

<FF flow descriptor> ::=
[<FLOWSPEC> | <FILTER_SPEC> [MULTI_FLOWSPEC]

SE style:
<flow descriptor list> ::= <SE flow descriptor>

<SE flow descriptor> ::

<FLOWSPEC> <filter spec list> [MULTI_FLOWSPEC]
<filter spec list> ::= <FILTER_SPEC>

| <filter spec list> <FILTER_SPEC>

3.1 New MULTI_TSPEC and MULTI-RSPEC Parameters

This extension to Integrated Services defines two new parameters
They are:

1. <parameter name> Multiple_Token_Bucket_Tspec, with a parameter
number of 125.

2. <parameter name> Multiple_Guaranteed_Service_RSpec with a
parameter number of 124

These are IANA registered in this document.

The original SENDER_TSPEC and FLOWSPEC for Controlled Service
maintain the <parameter name> of Token_Bucket_Tspec with a parameter
number of 127. The original FLOWSPEC for Guaranteed Service

maintains the <parameter name> of Guaranteed_Service_RSpec with a
parameter number of 130.

3.2 Multiple TSPEC in a PATH Message

Polk & Dhesikan Expires September 14, 2011 [Page 9]

Internet-Draft IntServ MULTI_TSPEC Mar 2011

Here is the object from [RFC2210]. It is used as a SENDER_TSPEC in a
PATH message:

1

2

3

4

5

6

7

8

31 24 23 16 15 87 0

B ot e e S S S S e e
|0(@)| reserved | 7 (b) |

Fot-totot ottt ottt ottt ottt ottt ottt bbb+
| X (c) |O]reserved | 6 (d) [

e S L L A T R R N e o ot S
| 127(¢) | O() | 5(9) |

B ot e e S S S S e e
| Token Bucket Rate [r] (32-bit IEEE floating point number) |
Fot-totot ottt ottt ottt ottt ottt ottt bbb+
| Token Bucket Size [b] (32-bit IEEE floating point number) |
e S L L A T R R N e o ot S
| Peak Data Rate [p] (32-bit IEEE floating point number) |
B ot e e S S S S e e
| Minimum Policed Unit [m] (32-bit integer) |

Fot-totot ottt ottt ottt ottt ottt ottt bbb+
| Maximum Packet Size [M] (32-bit integer) |

e S L L A T R R N e o ot S

Figure 4. SENDER_TSPEC in PATH

(a) - Message format version number (0)

(b) - Overall length (7 words not including header)

(c) - Service header, service number

- '1’ (Generic information) if in a PATH message;

(d) - Length of service data, 6 words not including
per-service header

(e) - Parameter ID, parameter 127 (Token Bucket TSpec)

(f) - Parameter 127 flags (none set)

(g) - Parameter 127 length, 5 words not including per-service
header

For completeness, Figure 4 is included in its original form for

backwards compatibility reasons, as if there were only 1 TSPEC in

the PATH. What is new when there are more than one TSPEC in

this reservation message is the new MULTI_TSPEC object in Figure 5
containing, for example, 3 (Multiple_Token_Bucket_Tspec) TSPECs in a
PATH message.

1

2

3

4

31 24 23 16 15 87 0

S e T L L s st TR S I Nt e S e s s TR SRR LB S
|0(a)| reserved | 19 (b) |

B s e s o o S e S I s s Ak o S T SR T e
| 5 (c) |O]reserved | 18 (d) |

s E T ok ot S S S S TR o S S T o s o
| 125(6) | 0(h) | 5(9) |

S e T L L s st TR S I Nt e S e s s TR SRR LB S
| Token Bucket Rate [r] (32-bit IEEE floating point number) |
e Tt L s oTi S S S S S S S

Polk & Dhesikan Expires September 14, 2011 [Page 10]

Internet-Draft IntServ MULTI_TSPEC Mar 2011

5 | Token Bucket Size [b] (32-bit IEEE floating point number) |

S e T L L s st TR S I Nt e S e s s TR SRR LB S
6 | Peak Data Rate [p] (32-bit IEEE floating point number) |

e Tt L s oTi S S S S S S S
7 | Minimum Policed Unit [m] (32-bit integer) |

B S o S s o S S S
8 | Maximum Packet Size [M] (32-bit integer) |

S e T L L s st TR S I Nt e S e s s TR SRR LB S
9 | 125() | O() | 5(9) |

e Tt L s oTi S S S S S S S
10 | Token Bucket Rate [r] (32-bit IEEE floating point number) |

B S o S s o S S S
11 | Token Bucket Size [b] (32-bit IEEE floating point number) |

S e T L L s st TR S I Nt e S e s s TR SRR LB S
12 | Peak Data Rate [p] (32-bit IEEE floating point number) |

e Tt L s oTi S S S S S S S
13 | Minimum Policed Unit [m] (32-bit integer) |

B S o S s o S S S
14 | Maximum Packet Size [M] (32-bit integer) |

S e T L L s st TR S I Nt e S e s s TR SRR LB S
15 | 125(¢) | O() | 5(9) I

e Tt L s oTi S S S S S S S
16 | Token Bucket Rate [r] (32-bit IEEE floating point number) |

B S o S s o S S S
17 | Token Bucket Size [b] (32-bit IEEE floating point number) |

S e T L L s st TR S I Nt e S e s s TR SRR LB S
18 | Peak Data Rate [p] (32-bit IEEE floating point number) |

e Tt L s oTi S S S S S S S
19 | Minimum Policed Unit [m] (32-bit integer) |

B S o S s o S S S
20 | Maximum Packet Size [M] (32-bit integer) |

S e T L L s st TR S I Nt e S e s s TR SRR LB S

Figure 5. MULTI_TSPEC Object

(a) - Message format version number (0)

(b) - Overall length (19 words not including header)

(c) - Service header, service number 5 (Controlled-Load)

(d) - Length of service data, 18 words not including
per-service header

(e) - Parameter ID, parameter 125 (Multiple Token Bucket TSpec)

(f) - Parameter 125 flags (none set)

(g) - Parameter 125 length, 5 words not including per-service
header

Figure 5 shows the 2nd through Nth TSPEC in the PATH in the
preferred order. The message format (a) remains the same for a
second TSPEC and for other additional TSPECs.

The Overall Length (b) includes all the TSPECSs within this object,

plus the 2nd Word (containing fields (c) and (d)), which MUST NOT be
repeated. The service header fields (e),(f) and(g) are repeated for

Polk & Dhesikan Expires September 14, 2011 [Page 11]

Internet-Draft IntServ MULTI_TSPEC Mar 2011
each TSPEC.

The Service header, here service number 5 (Controlled-Load) MUST
remain the same.

Each TSPEC is six 32-bit Words long (the per-service header plus the

5 values that are 1 Word each in length), therefore the length is in

6 Word increments for each additional TSPEC. Case in point, from

the above Figure 5, Words 3-8 are the first TSPEC (2nd preferred),

Words 9-14 are the next TSPEC (3rd preferred), and Words 15-20 are

the final TSPEC (and 4th preferred) in this example of 3 TSPECs in

this MULTI_TSPEC object. There is no limit placed on the number of

TSPECs a MULTI_TSPEC object can have. However, it is RECOMMENDED to
administratively limit the number of TSPECs in the MULTI_TSPEC

object to 9 (making for a total of 10 in the PATH message).

The TSPECS are included in the order of preference by the message
generator (PATH) and MUST be maintained in that order all the way to
the Receiver. The order of TSPECs that are still grantable, in
conjunction with the ADSPEC at the Receiver, MUST retain that

order in the FLOWSPEC and MULTI_FLOWSPEC objects.

3.3 Multiple FLOWSPEC for Controlled-Load service
The format of an RSVP FLOWSPEC object requesting Controlled-Load
service is the same as the one used for the SENDER_TSPEC given in

Figure 4.

The format of the new MULTI_FLOWSPEC obiject is given below:

31 24 23 16 15 87 0

B s e s o o S e S I s s Ak o S T SR T e
1 |0(a)]| reserved | 19 (b) |

s E T ok ot S S S S TR o S S T o s o
2 | 5 (c) |O]reserved | 18 (d) |

S e T L L s st TR S I Nt e S e s s TR SRR LB S
31 125() | O | 5(9) |

B s e s o o S e S I s s Ak o S T SR T e
4 | Token Bucket Rate [r] (32-bit IEEE floating point number) |

s E T ok ot S S S S TR o S S T o s o
5 | Token Bucket Size [b] (32-bit IEEE floating point number) |

S e T L L s st TR S I Nt e S e s s TR SRR LB S
6 | Peak Data Rate [p] (32-bit IEEE floating point number) |

B s e s o o S e S I s s Ak o S T SR T e
7 | Minimum Policed Unit [m] (32-bit integer) |

s E T ok ot S S S S TR o S S T o s o
8 | Maximum Packet Size [M] (32-bit integer) |

S e T L L s st TR S I Nt e S e s s TR SRR LB S
9 | 125() | 0() | 5(9) |

B s e s o o S e S I s s Ak o S T SR T e

Polk & Dhesikan Expires September 14, 2011 [Page 12]

Internet-Draft IntServ MULTI_TSPEC Mar 2011

10 | Token Bucket Rate [r] (32-bit IEEE floating point number) |

S e T L L s st TR S I Nt e S e s s TR SRR LB S
11 | Token Bucket Size [b] (32-bit IEEE floating point number) |

e Tt L s oTi S S S S S S S
12 | Peak Data Rate [p] (32-bit IEEE floating point number) |

B S o S s o S S S
13 | Minimum Policed Unit [m] (32-bit integer) |

S e T L L s st TR S I Nt e S e s s TR SRR LB S
14 | Maximum Packet Size [M] (32-bit integer) |

e Tt L s oTi S S S S S S S
15 | 125(¢) | O(H) | 5(9) |

B S o S s o S S S
16 | Token Bucket Rate [r] (32-bit IEEE floating point number) |

S e T L L s st TR S I Nt e S e s s TR SRR LB S
17 | Token Bucket Size [b] (32-bit IEEE floating point number) |

e Tt L s oTi S S S S S S S
18 | Peak Data Rate [p] (32-bit IEEE floating point number) |

B S o S s o S S S
19 | Minimum Policed Unit [m] (32-bit integer) |

S e T L L s st TR S I Nt e S e s s TR SRR LB S
20 | Maximum Packet Size [M] (32-bit integer) |

e Tt L s oTi S S S S S S S

Figure 5. Multiple FLOWSPEC for Controlled-Load service

(a) - Message format version number (0)

(b) - Overall length (19 words not including header)

(c) - Service header, service number 5 (Controlled-Load)

(d) - Length of controlled-load data, 18 words not including
per-service header

(e) - Parameter ID, parameter 125 (Multiple Token Bucket TSpec)

(f) - Parameter 125 flags (none set)

(g) - Parameter 125 length, 5 words not including per-service
header

This is for the 2nd through Nth TSPEC in the RESV, in the
preferred order.

The message format (a) remains the same for a second TSPEC and
for additional TSPECs.

The Overall Length (b) includes the TSPECSs, plus the 2nd Word
(fields (c) and (d)), which MUST NOT be repeated. The service header
fields (e),(f) and(g), which are repeated for each TSPEC.

The Service header, here service number 5 (Controlled-Load) MUST
remain the same for the RESV message. The services, Controlled-Load
and Guaranteed MUST NOT be mixed within the same RESV message. In
other words, if one TSPEC is a Controlled Load service TSPEC, the
remaining TSPECs MUST be Controlled Load service. This same rule
also is true for Guaranteed Service - if one TSPEC is for Guaranteed

Polk & Dhesikan Expires September 14, 2011 [Page 13]

Internet-Draft IntServ MULTI_TSPEC Mar 2011

Service, the rest of the TSPECs in this PATH or RESV MUST be for
Guaranteed Service.

The Length of controlled-load data (d) also increases to account for
the additional TSPECs.

Each FLOWSPEC is six 32-bit Words long (the per-service header plus
the 5 values that are 1 Word each in length), therefore the length

is in 6 Word increments for each additional TSPEC. Case in point,
from the above Figure 5, Words 3-8 are the first TSPEC (2nd
preferred), Words 9-14 are the next TSPEC (3rd preferred), and Words
15-20 are the final TSPEC (and 4th preferred) in this example of 3
TSPECs in this FLOWSPEC. There is no limit placed on the number of
TSPECs a particular FLOWSPEC can have.

Within the MULTI_FLOWSPEC, any SENDER_TSPEC that cannot be reserved
- based on the information gathered in the ADSPEC, is not placed in

the RESV or based on other information available to the receiver.
Otherwise, the order in which the TSPECs were in the PATH message
MUST be in the same order they are in the FLOWSPEC in the RESV.
This is the order of preference of the sender, and MUST be

maintained throughout the reservation establishment, unless the
ADSPEC indicates one or more TSPECs cannot be granted, or the
receiver cannot include any TSPEC due to technical or administrative
constraints or one or more routers along the RESV path cannot grant

a particular TSPEC. At any router that a reservation cannot honor a
TSPEC, this TSPEC MUST be removed from the RESV, or else another
router along the RESV path might reserve that TSPEC. This rule
ensures this cannot happen.

Once one TSPEC has been removed from the RESV, the next in line
TSPEC becomes the preferred TSPEC for that reservation. That router
MUST generate a ResvErr message, containing an ERROR_SPEC object
with a Policy Control Failure with Error code = 2 (Policy Control

Failure), and an Error Value sub-code 102 (ERR_PARTIAL_PREEMPT) to
the previous routers, clearing the now over allocation of bandwidth

for this reservation. The difference between the previously

accepted TSPEC bandwidth and the currently accepted TSPEC bandwidth
is the amount this error identifies as the amount of bandwidth that

is no longer required to be reserved. The ResvErr and the RESV
messages are independent, and not normally sent by the same router.
This aspect of this document is the extension to RFC 2205 (RSVP).

If a RESV cannot grant the final TSPEC, normal RSVP rules apply with
regard to the transmission of a particular ResvErr.

3.4 Multiple FLOWSPEC for Guaranteed service
The FLOWSPEC object, which is used to request guaranteed service

contains a TSPEC and RSpec. Here is the FLOWSPEC object from
[RFC2215] when requesting Guaranteed service:

Polk & Dhesikan Expires September 14, 2011 [Page 14]

Internet-Draft IntServ MULTI_TSPEC Mar 2011

31 24 23 16 15 87 0

S e T L L s st TR S I Nt e S e s s TR SRR LB S
1 |0(@)]| Unused | 10 (b) [

B s e s o o S e S I s s Ak o S T SR T e
2 | 2 (c) |O]reserved | 9 (d) |

s E T ok ot S S S S TR o S S T o s o
3 1 127() | OCF) | 5(9) |

S e e L B T i e s e
4 | Token Bucket Rate [r] (32-bit IEEE floating point number) |

e Tt L s oTi S S S S S S S
5 | Token Bucket Size [b] (32-bit IEEE floating point number) |

B S o S s o S S S
6 | Peak Data Rate [p] (32-bit IEEE floating point number) |

e e e T S e r
7 | Minimum Policed Unit [m] (32-bit integer) |

e Tt L s oTi S S S S S S S
8 | Maximum Packet Size [M] (32-bit integer) |

B S o S s o S S S
9 | 130() | 0@ | 2 (j) |

ot L E A e S O SR
10 | Rate [R] (32-bit IEEE floating point number) |

e Tt L s oTi S S S S S S S
11 | Slack Term [S] (32-bit integer) |

B S o S s o S S S

Figure 6. FLOWSPEC for Guaranteed service

(a) - Message format version number (0)
(b) - Overall length (9 words not including header)
(c) - Service header, service number 2 (Guaranteed)
(d) - Length of per-service data, 9 words not including
per-service header
(e) - Parameter ID, parameter 127 (Token Bucket TSpec)
(f) - Parameter 127 flags (none set)
(g) - Parameter 127 length, 5 words not including parameter header
(h) - Parameter ID, parameter 130 (Guaranteed Service RSpec)
(i) - Parameter xxx flags (none set)
() - Parameter xxx length, 2 words not including parameter header

The difference in structure between the Controlled-Load FLOWSPEC and
Guaranteed FLOWSPEC is the RSPEC, defined in [RFC2212].

For completeness, Figure 6 is included in its original form for

backwards compatibility reasons, as if there were only 1 FLOWSPEC in
the RESV. What is new when there is more than one TSPEC in the
FLOWSPEC in a RESV message is the new MULTI_FLOWSPEC object in
Figure 7 containing, for example, 3 FLOWSPECSs requesting Guaranteed
Service.

31 24 23 16 15 87 0
S e s St IS S S S S S S

Polk & Dhesikan Expires September 14, 2011 [Page 15]

Internet-Draft IntServ MULTI_TSPEC Mar 2011

1 |0@)]| Unused | 28 (b) |
S e T L L s st TR S I Nt e S e s s TR SRR LB S
| 2 (c) |O]reserved | 27 (d) |
e Tt L s oTi S S S S S S S
3] 125(.) | 0() | 5(9) |

B S o S s o S S S
4 | Token Bucket Rate [r] (32-bit IEEE floating point number) |

S e T L L s st TR S I Nt e S e s s TR SRR LB S
5 | Token Bucket Size [b] (32-bit IEEE floating point number) |

e Tt L s oTi S S S S S S S
6 | Peak Data Rate [p] (32-bit IEEE floating point number) |

B S o S s o S S S
7 | Minimum Policed Unit [m] (32-bit integer) |
S e T L L s st TR S I Nt e S e s s TR SRR LB S
| Maximum Packet Size [M] (32-bit integer) |
e Tt L s oTi S S S S S S S
| 124(h) | O() | 2 ()) |
B S o S s o S S S
10 | Rate [R] (32-bit IEEE floating point number) |

S e T L L s st TR S I Nt e S e s s TR SRR LB S
11 | Slack Term [S] (32-bit integer) |

e Tt L s oTi S S S S S S S
12| 125() | 0() | 5(9) |

B S o S s o S S S
13 | Token Bucket Rate [r] (32-bit IEEE floating point number) |

S e T L L s st TR S I Nt e S e s s TR SRR LB S
14 | Token Bucket Size [b] (32-bit IEEE floating point number) |

e Tt L s oTi S S S S S S S
15 | Peak Data Rate [p] (32-bit IEEE floating point number) |

B S o S s o S S S
16 | Minimum Policed Unit [m] (32-bit integer) |

S e T L L s st TR S I Nt e S e s s TR SRR LB S
17 | Maximum Packet Size [M] (32-bit integer) |

e Tt L s oTi S S S S S S S
18 | 124(h) | O(@) | 2 (j) |

B S o S s o S S S
19 | Rate [R] (32-bit IEEE floating point number) |

S e T L L s st TR S I Nt e S e s s TR SRR LB S
20 | Slack Term [S] (32-bit integer) |

e Tt L s oTi S S S S S S S
21| 125(¢) | O(H) | 5(9) |

B S o S s o S S S
22 | Token Bucket Rate [r] (32-bit IEEE floating point number) |

S e T L L s st TR S I Nt e S e s s TR SRR LB S
23 | Token Bucket Size [b] (32-bit IEEE floating point number) |

e Tt L s oTi S S S S S S S
24 | Peak Data Rate [p] (32-bit IEEE floating point number) |

B S o S s o S S S
25 | Minimum Policed Unit [m] (32-bit integer) |

S e T L L s st TR S I Nt e S e s s TR SRR LB S
26 | Maximum Packet Size [M] (32-bit integer) |

e Tt L s oTi S S S S S S S

N

oo

©

Polk & Dhesikan Expires September 14, 2011 [Page 16]

Internet-Draft IntServ MULTI_TSPEC Mar 2011

271 124(h) | o(@) | 2(j) I

A L it i e e e
28 | Rate [R] (32-bit IEEE floating point number) |

e Tt L s oTi S S S S S S S
29 | Slack Term [S] (32-bit integer) |

B S o S s o S S S

Figure 7. Multiple FLOWSPECSs for Guaranteed service

(a) - Message format version number (0)
(b) - Overall length (9 words not including header)
(c) - Service header, service number 2 (Guaranteed)
(d) - Length of per-service data, 9 words not including
per-service header
(e) - Parameter ID, parameter 125 (Token Bucket TSpec)
(f) - Parameter 125 flags (none set)
(g) - Parameter 125 length, 5 words not including parameter header
(h) - Parameter ID, parameter 124 (Guaranteed Service RSpec)
(i) - Parameter 124 flags (none set)
() - Parameter 124 length, 2 words not including parameter header

There MUST be 1 RSPEC per TSPEC for Guaranteed Service. Therefore,
there are 5 words for Receiver TSPEC and 3 words for the RSPEC.

Therefore, for Guaranteed Service, the TSPEC/RSPEC combination
occurs in increments of 8 words.

4. Rules of Usage

The following rules apply to nodes adhering to this specification:

4.1 Backward Compatibility

If the recipient does not understand this extension, it ignores this
MULTI_TSPEC object, and operates normally for a node receiving this
RSVP message.

4.2 Applies to Only a Single Session
When there is more than one TSPEC object or more than one FLOWSPEC
object, this MUST NOT be considered for more than one flow created.
These are OR choices for the same flow of data. In order to attain
three reservations between two endpoints, three different

reservation requests are required, not one reservation request with
3 TSPECs.

4.3 No Special Error Handling for PATH Message

If a problem occurs with the PATH message - regardless of this

Polk & Dhesikan Expires September 14, 2011 [Page 17]

Internet-Draft IntServ MULTI_TSPEC Mar 2011

extension, normal RSVP procedures apply (i.e., there is no new
PathErr code created within this extension document) - resulting in
a PathErr message being sent upstream towards the sender, as usual.

4.4 Preference Order to be Maintained

When more than one TSPEC is in a PATH message, the order of TSPECs

is decided by the Sender and MUST be maintained within the
SENDER_TSPEC. The same order MUST be carried to the FLOWSPECs by
the receiver. No additional TSPECS can be introduced by the receiver

or any router processing these new objects. The deletion of TSPECs

from a PATH message is not permitted. The deletion of the TSPECs

when forming the FLOWSPEC is allowed by the receiver in the

following cases:

- If one or more preferred TSPECs cannot be granted by a router as
discovered during processing of the ADSPEC by the receiver, then
they can be omitted when creating the FLOWSPEC(s) from the TSPECs.

- If one or more TSPECs arriving from the sender is not preferred by
the receiver, then the receiver MAY omit any while creating the
FLOWSPEC. A good reason to omit a TSPEC is if, for example, it
does not match a codec supported by the receiver’'s application(s).

The deletion of the TSPECs in the router during the processing of
this MULTI_FLOWSPEC object is allowed in the following cases:

- If the original FLOWSPEC cannot be granted by a router then the
router may discard that FLOWSPEC and replace it with the topmost
FLOWSPEC from the MULTI_FLOWSPEC project. This will cause the
topmost FLOWSPEC in the MULTI_FLOWSPEC object to be removed. The
next FLOWSPECs becomes the topmost FLOWSPEC.

- If the router merges multiple RESV into a single RESV message,
then the FLOWSPEC and the multiple FLOWSPEC may be affected

The preferred order of the remaining TSPECs or FLOWSPECs MUST be
kept intact both at the receiver as well as the router processing
these objects.

4.5 Bandwidth Reduction in Downstream Routers

If there are multiple FLOWSPECSs in a single RESV message, it is
quite possible that a higher bandwidth is reserved at a previous
downstream device. Thus, any device that grants a reservation that
is not the highest will have to inform the previous downstream
routers to reduce the bandwidth reserved for this particular
session.

The bandwidth reduction RFC [RFC4495] has the ability to partially

Polk & Dhesikan Expires September 14, 2011 [Page 18]

Internet-Draft IntServ MULTI_TSPEC Mar 2011

preempt existing reservations. However, it does not address the need
that this draft addresses. RFC 4495 defines an ability to preempt
part of an existing reservation so as to admit a new incoming
reservation with a higher priority, in lieu of tearing down the

whole reservation with lower priority. It does not specify the

capability to reduce the bandwidth a RESV set up along the data path
before the reservation is realized (from source to destination),

when a subsequent router cannot support a more preferred FLOWSPEC
contained in that RESV. This document will extend the RFC 4495
defined error to work for previous hops while a reservation is being
established.

4.6 Merging Rules

RFC 2205 defines the rules for merging as combining more than one
FLOWSPEC into a single FLOWSPEC. In the case of MULTI_FLOWSPECSs,
merging of the two (or more) MULTI_FLOWSPEC MUST be done to arrive

at a single MULTI_FLOWSPEC. The merged MULTI_FLOWSPEC will contain
all the flow specification components of the individual

MULTI_FLOWSPECSs in descending orders of bandwidth. In other words,

the merged FLOWSPEC MUST maintain the relative order of each of the
individual FLOWSPECs. For example, if the individual FLOWSPEC order

is 1,2,3 and another FLOWSPEC is a,b,c, then this relative ordering

cannot be altered in the merged FLOWSPEC.

A byproduct of this is the ordering between the two individual
FLOWSPECSs cannot be signaled with this extension. If two (or more)
FLOWSPECs have the same bandwidth, they are to be merged into one
FLOWSPEC using the rules defined in RFC 2205. It is RECOMMENDED
that the following rules are used for determining ordering (in TSPEC

and FLOWSPEC):

For Controlled Load - in descending order of BW based on the
Token Bucket Rate 'r’ parameter value

For Guaranteed Service - in descending order of BW based on the
RSPEC Rate 'R’ parameter value

The resultant FLOWSPEC is added to the MULTI_FLOWSPEC based on its
bandwidth in descending orders of bandwidth.

As a result of such merging, the number of FLOWSPECs in a
MULTI_FLOWSPEC object should be the sum of the number of FLOWSPECs
from individual MULTI_FLOWSPEC that have been merged *minus* the
number of duplicates.

4.7 Applicability to Multicast
An RSVP message with a MULTI_TSPEC works just as well in a multicast

scenario as it does in a unicast scenario. In a multicast scenario,
the bandwidth allotted in each hop is the lowest bandwidth that can

Polk & Dhesikan Expires September 14, 2011 [Page 19]

Internet-Draft IntServ MULTI_TSPEC Mar 2011

be admitted along the various path. For example:

T — + + + + + + +

| sender |======>| Router-1 |=====>| Router-2 |=====>| Receiver-A |
Hommmmeee + + + + + + +
| I
| I
| Y
| B R +
| | Receiver-C |
| R +
|
Y,
R RE—— +
| Receiver-B |
[+

Figure 8. MULTI_TPSEC and Multicast

If the sender (in Figure 8) sends 3 TSPECs (i.e., 1 TSPEC Object,

and 2 in the MULTI_TSPEC Obiject) of 12Mbps, 5Mbps and 1.5Mbps. Let
us say the path from Receiver-B to Router-1 admitted 5Mbps,

Receiver-C to Router-2 admitted 1.5Mbps and Receiver-A to Router-2
admitted 12Mbps.

When the Resv message is send upstream from Router-2, the combining
of 1.5Mbps (to Receiver-C) and 12Mbps (to Receiver-A) will be

resolved to 1.5Mbps (lowest that can be admitted). Only a Resv with
1.5Mbps will be sent upstream from Router-2. Likewise, at Router-1,

the combining of 1.5Mbps (to Router-2) and 5Mbps (to Receiver-B)

will be resolved to 1.5Mbps units.

This is to allow the sender to transmit the flow at a rate that can

be accepted by all devices along the path. Without this, if Router-2
receives a flow of 12Mbps, it will not know how to create a flow of
1.5Mbps down to Receiver-B. A differentiated reservation for the

various paths along a multicast path is only possible with a

Media-aware network device (MANE). The discussion of MANE and how it
relates to admission control is outside the scope of this draft.

4.8 MULTI_TSPEC Specific Error

Since this mechanism is backward compatible, it is possible that a

router without support for this MULTI_TSPEC extension will reject a
reservation because the bandwidth indicated in the primary FLOWSPECs
is not available. This means that an attempt with a lower bandwidth

might have been successful, if one were included in a MULTI_TSPEC
Object. Therefore, one should be able to differentiate between an
admission control error where there is insufficient bandwidth when

all the FLOWSPECSs are considered and insufficient bandwidth when

Polk & Dhesikan Expires September 14, 2011 [Page 20]

Internet-Draft IntServ MULTI_TSPEC Mar 2011
only the primary FLOWSPEC is considered.

This requires the definition of an error code within the ERROR_SPEC
Object. When a router does not have sufficient bandwidth even after
considering all the FLOWSPEC provided, it issues a new "MULTI_TSPEC
bandwidth unavailable " error. This will be an Admission Control

Failure (error #1), with a subcode of 6. A router that does not

support this MULTI_TSPEC extension will return the "requested
bandwidth unavailable" error as defined in RFC 2205 as if there was

no MULTI_TSPEC in the message.

4.9 Other Considerations

- RFC 4495 articulates why a ResvErr is more appropriate to use for
reducing the bandwidth of an existing reservation vs. a ResvTear.

- Refreshes only include the TSPECs that were accepted. One SHOULD
be sent immediately upon the Sender receiving the RESV, to
ensure all routers in this flow are synchronized with which TSPEC
is in place.

- Periodically, it might be appropriate to attempt to increase the
bandwidth of an accepted reservation with one of the TSPECs that
were not accepted by the network when the reservation was first
installed. This SHOULD NOT occur too regularly. This document
currently offers no guidance on the frequency of this bump request
for a rejected TSPEC from the PATH.

4.10 Known Open Issues
Here are the know open issues within this document:

o0 Both the idea of MULTI_RSPEC and MULTI_FLOWSPEC need to be
fleshed out, and IANA registered.

o0 Need to ensure the cap on the number of TSPECs and FLOWSPECs is
viable, yet controlled.

5. Security considerations

The security considerations for this document do not exceed what is
already in RFC 2205 (RESV) or RFC 2210 (IntServ), as nothing in
either of those documents prevent a node from requesting a lot of
bandwidth in a single TSPEC. This document merely reduces the
signaling traffic load on the network by allowing many requests that
fall under the same policy controls to be included in a single
round-trip message exchange.

Further, this document does not increase the security risk(s) to

Polk & Dhesikan Expires September 14, 2011 [Page 21]

Internet-Draft IntServ MULTI_TSPEC Mar 2011

that defined in RFC 4495, where this document creates additional
meaning to the RFC 4495 created error code 102.

A misbehaving Sender can include too many TSPECs in the
MULTI_TSPEC object, which can lead to an amplification attack. That
said, a bad implementation can create a reservation for each TSPEC
received from within the Resv message. The number of TSPECs in the
new MULTI_TSPEC object is limited, and the spec clearly states that
only a single reservation is to be set up per Resv message.

6. IANA considerations

This document IANA registers the following new parameter name in the
Integ-serv assignments at [IANA]:

Registry Name: Parameter Names

Registry:

Value Description Reference

125 Multiple_Token_Bucket_Tspec [RFCXXXX]
124 Multiple_Guaranteed_Service_RSpec [RFCXXXX]

Where RFCXXXX is replaced with the RFC number assigned to this
Document.

This document IANA registers the following new error subcode in the
Error code section, under the Admission Control Failure (error=1),
of the rsvp-parameters assignments at [IANA]:

Registry Name: Error Codes and Globally-Defined Error Value

Sub-Codes
Registry:
"Admission Control
Failure"
Error Subcode meaning Reference
6 = MULTI_TSPEC bandwidth unavailable [RFCXXXX]

7. Acknowledgments
The authors wish to thank Fred Baker, Joe Touch, Bruce Davie, Dave
Oran, Ashok Narayanan, Lou Berger, Lars Eggert, Arun Kudur and Janet
Gunn for their helpful comments and guidance in this effort.

And to Francois Le Faucheur, who provided text in this version.

8. References

Polk & Dhesikan Expires September 14, 2011 [Page 22]

Internet-Draft IntServ MULTI_TSPEC Mar 2011
8.1. Normative References

[RFC2119] S. Bradner, "Key words for use in RFCs to Indicate
Requirement Levels", RFC 2119, March 1997

[RFC2205] R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, S. Jamin,
"Resource ReSerVation Protocol (RSVP) -- Version 1
Functional Specification”, RFC 2205, September 1997

[RFC2210] J. Wroclawski, "The Use of RSVP with IETF Integrated
Services", RFC 2210, September 1997

[RFC2212] S. Shenker, C. Partridge, R. Guerin, "Specification of
Guaranteed Quality of Service", RFC 2212, September 1997

[RFC2215] S. Shenker, J. Wroclawski, "General Characterization
Parameters for Integrated Service Network Elements”,
RFC 2212, September 1997

[RFC4495] J. Polk, S. Dhesikan, "A Resource Reservation Protocol

(RSVP) Extension for the Reduction of Bandwidth of a
Reservation Flow", RFC 4495, May 2006

8.2. Informative References

[IANA] http://www.iana.org/assignments/integ-serv

Authors’ Addresses

James Polk

3913 Treemont Circle
Colleyville, Texas, USA
+1.817.271.3552

mailto: jmpolk@cisco.com
Subha Dhesikan

Cisco Systems

170 W. Tasman Drive
San Jose, CA 95134 USA

mailto: sdhesika@cisco.com

Appendix A: Alternatives for Sending Multiple TSPECs

This appendix describes the discussion within the TSVWG of which
approach best fits the requirements of sending multiple TSPECs
within a single PATH or RESV message. There were 3 different
options proposed, of which - 2 were insufficient or caused more harm

Polk & Dhesikan Expires September 14, 2011 [Page 23]

Internet-Draft IntServ MULTI_TSPEC Mar 2011
than other options.
Looking at the format of a PATH message [RFC2205] again:
<PATH Message> ::= <Common Header> [<INTEGRITY>]
<SESSION> <RSVP_HOP>
<TIME_VALUES>
[<POLICY_DATA> ...]
[<sender descriptor>]
<sender descriptor> ::= <SENDER_TEMPLATE> <SENDER_TSPEC>
NNANNNNNNNNNN
[<ADSPEC>]
For the PATH message, the focus of this document is with what to do
with respect to the <SENDER_TSPEC> above, highlighted by the '"MA»
characters. No other object within the PATH message will be affected
by this IntServ extension.
The ADSPEC is optional in IntServ; therefore it might or might not
be in the RSVP PATH message. Presently, the SENDER_TSPEC is limited
to one bandwidth associated with the session. This is changed in
this extension to IntServ to multiple bandwidths for the same
session. There are multiple options on how the additional bandwidths

may be added:

Option #1 - creating the ability to add one or more additional
(and complete) SENDER_TSPECs,

or
Option #2 - create the ability for the one already allowed
SENDER_TSPEC to carry more than one bandwidth amount
for the same reservation.
or
Option #3 - create the ability for the existing SENDER_TSPEC to
remain unchanged, but add an optional <MULTI_TSPEC>
object to the <sender descriptor> such as this:
<sender descriptor> ::= <SENDER_TEMPLATE> <SENDER_TSPEC>

[<ADSPEC>] [<MULTI_TSPEC>]

NANNNNNNNNNN

Here is another way of looking at the option choices:

Polk & Dhesikan Expires September 14, 2011 [Page 24]

Internet-Draft IntServ MULTI_TSPEC Mar 2011

+ + + +
| Option#l | Option#2 | Option#3 |

I I | |

| | TSPEC1 | || MULTL_TSPEC | | | TSPEC1 | |
| et || Object | | et |

| || Aot |

|+ + || |TSPECL1| | | +------mmm-- + |

| | TSPEC2 | || +----—-- + | | | MULTI_TSPEC | |

| s + | |+t | | | Object ||

| | | ITSPEC2]| | | |+t ||

| et || et |]] | TSPEC2] | |

| | TSPEC3 | | | temeeeeect | | | oot | |

| s + | [ITSPEC3] | | | #omeeeect | |

| | | 4=t | || | TSPEC3] |

B ¥ ||| TSPECA| | | | #omemeeet | |

| | TSPEC4 | | | +----—- + O + ||

| +---mmmee- + | A + | | | TSPEC4 | | |

| | || Aot] |

| | | e +

| I | |

Figure 3. Concept of Option Choice

Option #1 and #2 do not allow for backward compatibility. If the

currently used SENDER_TSPEC and FLOWSPEC objects are changed, then
unless all the routers requiring RSVP processing are upgraded, this
functionality cannot be realized. As it is unlikely that all routers

along the path will have the necessary enhancements as per this

extension at one given time, therefore, it is necessary this

enhancement be made in a way that is backward compatible. Therefore,
option #1 and option #2 has been discarded in favor of option #3,

which had WG consensus in a recent IETF meeting.

Option #3: This option has the advantage of being backwards
compatible with existing implementations of [RFC2205] and [RFC2210],
as the multiple TSPECs and FLOWSPECs are inserted as optional
objects and such objects do not need to be processed, especially if
they are not understood.

Option#3 applies to the FLOWSPEC contained in the RESV message as
well. In this option, the original SENDER_TSPEC and the FLOWSPEC are
left untouched, allowing routers not supporting this extension to be

able to process the PATH and the RESV message without issue. Two new
additional objects are defined in this document. They are the
MULTI_TSPEC and the MULTI_FLOWSPEC for the PATH and the RESV
message, respectively. The additional TSPECs (in the new MULTI_TSPEC
Object) are included in the PATH and the additional FLOWSPECS (in

the new MULTI_FLOWSPEC Obiject) are included in the RESV message as
new (optional) objects. These additional objects will have a class

number of 11bbbbbb, allowing older routers to ignore the object(s)

Polk & Dhesikan Expires September 14, 2011 [Page 25]

Internet-Draft IntServ MULTI_TSPEC Mar 2011

and forward each unexamined and unchanged, as defined in section
3.10 of [RFC 2205].

We state in the document body that the top most FLOWSPEC of the new
MULTI_FLOWSPEC Object in the RESV message replaces the existing
FLOWSPEC when it is determined by the receiver (perhaps along

with the ADSPEC) that the original FLOWSPEC cannot be granted.
Therefore, the ordering of preference issue is solved with Option#3

as well.

NOTE: it is important to emphasize here that including more than
one FLOWSPEC in the RESV message does not cause more than one
FLOWSPEC to be granted. This document requires that the
receiver arrange these multiple FLOWSPECSs in the order of
preference according to the order remaining from the
MULTI_TSPECs in the PATH message. The benefit of this
arrangement is that RSVP does not have to process the rest of
the FLOWSPEC if it can admit the first one.

Additional details of these options can be found in the
draft-polk-tsvwg-...-01 version of this appendix (which includes the
RSVP bit mapping of fields in the TSPECs, if the reader wishes to
search for that doc.

Polk & Dhesikan Expires September 14, 2011 [Page 26]

Network Working Group M. Tuexen

Internet-Draft Muenster Univ. of Appl. Sciences

Intended status: Standards Track R. Stewart

Expires: January 12, 2012 Adara Networks
July 11, 2011

UDP Encapsulation of SCTP Packets
draft-tuexen-sctp-udp-encaps-07.txt

Abstract

This document describes a simple method of encapsulating SCTP Packets
into UDP packets and its limitations. This allows the usage of SCTP

in networks with legacy NAT not supporting SCTP. It can also be used

to implement SCTP on hosts without directly accessing the IP-layer,

for example implementing it as part of the application without

requiring special privileges.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. Itis inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 12, 2012.
Copyright Notice

Copyright (¢) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

Tuexen & Stewart Expires January 12, 2012 [Page 1]

Internet-Draft ~ UDP Encapsulation of SCTP Packets July 2011

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction 3
2. Conventionst 3
3.UseCases. ...t 3
3.1. Portable SCTP Implementations 3
3.2. Legacy NAT traversal 4
4, SCTPoverUDP i 4
4.1. Architectural Considerations 4
4.2. PacketFormat....................... 4
4.3. Encapsulation Procedure 5
4.4, Decapsulation Procedure 5
4.5, ICMP considerations 6
4.6. Path MTU considerations 6
4.7. Handling of Embedded IP-addresses 6
4.8. ECNconsiderations 6
5. IANA Considerations 6
6. Security Considerations 6
7. Acknowledgments........................ 7
8. References 7
8.1. Normative References 7
8.2. Informative References 7
Authors’ Addresses 8

Tuexen & Stewart Expires January 12, 2012 [Page 2]

Internet-Draft ~ UDP Encapsulation of SCTP Packets July 2011

1. Introduction

This document describes a simple method of encapsulating SCTP packets
into UDP packets. SCTP is defined in [RFC4960]. There are two main
reasons for this:

o Allow SCTP traffic to pass legacy NATs, which do not provide
native SCTP support as specified in [I-D.ietf-behave-sctpnat] and
[I-D.ietf-tsvwg-natsupp].

0 Allow SCTP to be implemented on hosts which do not provide direct
access to the IP-layer. In particular, applications can use their
own SCTP implementation if the operating system does not provide
one.

2. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

3. Use Cases

This section discusses two important use cases for encapsulating SCTP
into UDP.

3.1. Portable SCTP Implementations

Some operating systems support SCTP natively. For other operating
systems implementations are available, but require special privileges
to install and/or use them. In some cases no kernel implementation
might be available at all. When proving an SCTP implementation as
part of a user process, most operating systems require special
privileges to access the IP layer directly.

Using UDP encapsulation makes it possible to provide an SCTP
implementation as part of a user process which does not require any
special privileges.

A crucial point for implementing SCTP in userland is controlling the
source address of outgoing packets. This is not an issue when using
all available addresses. However, this is not the case when also

using the address management required for NAT traversal described in
Section 4.7.

Tuexen & Stewart Expires January 12, 2012 [Page 3]

Internet-Draft ~ UDP Encapsulation of SCTP Packets July 2011

3.2. Legacy NAT traversal

Using UDP encapsulation allows an SCTP communication traversing
legacy NATSs not supporting SCTP as described in
[I-D.ietf-behave-sctpnat] and [I-D.ietf-tsvwg-natsupp]. Itis

important to realize that for single homed associations it is only
necessary that no IP addresses are listen in the INIT- and INIT-ACK
chunks. Dynamic address reconfiguration to change the single address
has to make use of wildcard addresses as described in [RFC5061].

For multi-homed SCTP association the address management as described
in Section 4.7 MUST be performed.

4. SCTP over UDP
4.1. Architectural Considerations

An SCTP implementation supporting UDP encapsulation MUST store a UDP
encapsulation port per destination address for each SCTP association.

4.2. Packet Format

To encapsulate an SCTP packet, a UDP header header as defined in
[RFCO0768] is inserted between the IP header and the SCTP common
header.

Figure 1 shows the packet format of an encapsulated SCTP packet when
IPv4 is used.

0 1 2 3
01234567890123456789012345678901
B e e n ol S S S S S S
| IPv4 Header |

s e e L s St T
| UDP Header |

L e e L s e o s S O SR
| SCTP Common Header |

B e e n ol S S S S S S
| SCTP Chunk #1 |

s e e L SR
|+-+
| SCTP Chunk #n

B e e n ol S S S S S S

Figure 1

Tuexen & Stewart Expires January 12, 2012 [Page 4]

Internet-Draft ~ UDP Encapsulation of SCTP Packets July 2011

The packet format for an encapsulated SCTP packet when using IPv6 is
shown in Figure 2. Please note the the number m of IPv6 extension
headers can be 0.

0 1 2 3
01234567890123456789012345678901
e A S L e K e T o T TR S S
| IPv6 Base Header |

B e e n ol S S S S S S
| IPv6 Extension Header #1 |
s e e L s St T
|+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|-+-+-+-+-+-+-+-+-+-+-+-+-+
| IPv6 Extension Header #m |

B e e n ol S S S S S S
| UDP Header |

s e e L s St T S
| SCTP Common Header |

L e e L s o o s O SR
| SCTP Chunk #1 |

B e e n ol S S S S S S
|+-+
| SCTP Chunk #n

L e e L e o s S O SR

Figure 2
The UDP checksum MUST NOT be zero.
4.3. Encapsulation Procedure
When inserting the UDP header, the source port is 9899, the
destination port is the one stored for the destination address the

packet is sent to or 9899 if not destination address is stored.

The length of the UDP packet is the length of the SCTP packet plus
the size of the UDP header.

The checksum MUST be computed.

4.4. Decapsulation Procedure
When an encapsulated packet is received, the UDP header is removed.
Then a lookup is performed to find the association the received SCTP
packet belongs to. The UDP source port is stored as the

encapsulation port of the SCTP destination address the received SCTP
packet is sent from.

Tuexen & Stewart Expires January 12, 2012 [Page 5]

Internet-Draft ~ UDP Encapsulation of SCTP Packets July 2011

4.5. ICMP considerations
When receiving ICMP or ICMPV6 response packet, there might not be
enough bytes in the payload to identify the SCTP association which
the SCTP packet triggering the ICMP or ICMPv6 packet belongs to. If
a received ICMP or ICMPvV6 packet can to be related to a specific SCTP
association, it MUST be discarded silently.

4.6. Path MTU considerations
If an SCTP endpoint starts to encapsulate the packets of a path, it
MUST decrease the path MTU of that path by the size of an UDP header.
If it stops encapsulating them, the path MTU MUST be increased by the
size of an UDP header.
When performing path MTU discovery as described in [RFC4820] it MUST
take into account that it cannot rely on the feedback provided by
ICMP or ICMPV6 due to the limitation laid out in Section 4.5.

4.7. Handling of Embedded IP-addresses

When using UDP encapsulation is used for legacy NAT traversal, IP
address that might be translated MUST NOT be put into any SCTP
packet.

This means that an SCTP association is setup singled homed and the
protocol extension [RFC5061] is used to add multiple address. Only
wildcard addresses are put into the SCTP packet.

When addresses are changed during the lifetime of the association
[RFC5061] MUST be used with wildcard addresses only.

4.8. ECN considerations

TBD

5. IANA Considerations

This document does not require any actions from IANA.
6. Security Considerations

Encapsulating SCTP into UDP does not add any additional security
considerations to the ones given in [RFC4960] and [RFC5061].

Tuexen & Stewart Expires January 12, 2012 [Page 6]

Internet-Draft ~ UDP Encapsulation of SCTP Packets July 2011

7. Acknowledgments

The authors wish to thank Irene Ruengeler for her invaluable
comments.

8. References
8.1. Normative References

[RFCO768] Postel, J., "User Datagram Protocol”, STD 6, RFC 768,
August 1980.

[RFCO0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
September 1981.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification”, RFC 2460, December 1998.

[RFC4820] Tuexen, M., Stewart, R., and P. Lei, "Padding Chunk and
Parameter for the Stream Control Transmission Protocol
(SCTP)", RFC 4820, March 2007.

[RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
Discovery", RFC 4821, March 2007.

[RFC4895] Tuexen, M., Stewart, R., Lei, P., and E. Rescorla,
"Authenticated Chunks for the Stream Control Transmission
Protocol (SCTP)", RFC 4895, August 2007.

[RFC4960] Stewart, R., "Stream Control Transmission Protocol",
RFC 4960, September 2007.

[RFC5061] Stewart, R., Xie, Q., Tuexen, M., Maruyama, S., and M.
Kozuka, "Stream Control Transmission Protocol (SCTP)
Dynamic Address Reconfiguration”, RFC 5061,

September 2007.

8.2. Informative References

[I-D.ietf-behave-sctpnat]
Stewart, R., Tuexen, M., and |. Ruengeler, "Stream Control
Transmission Protocol (SCTP) Network Address Translation",
draft-ietf-behave-sctpnat-05 (work in progress),
June 2011.

Tuexen & Stewart Expires January 12, 2012 [Page 7]

Internet-Draft ~ UDP Encapsulation of SCTP Packets July 2011

[I-D.ietf-tsvwg-natsupp]
Stewart, R., Tuexen, M., and |. Ruengeler, "Stream Control
Transmission Protocol (SCTP) Network Address Translation
Support", draft-ietf-tsvwg-natsupp-01 (work in progress),
June 2011.

Authors’ Addresses

Michael Tuexen

Muenster University of Applied Sciences
Stegerwaldstr. 39

48565 Steinfurt

DE

Email: tuexen@fh-muenster.de

Randall R. Stewart
Adara Networks
Chapin, SC 29036
USA

Email: randall@lakerest.net

Tuexen & Stewart Expires January 12, 2012 [Page 8]

	draft-ietf-behave-sctpnat-09
	draft-ietf-dccp-udpencap-11
	draft-ietf-tsvwg-byte-pkt-congest-12
	draft-ietf-tsvwg-iana-ports-10
	draft-ietf-tsvwg-sctp-strrst-13
	draft-ietf-tsvwg-sctpsocket-32
	draft-polk-tsvwg-intserv-multiple-tspec-06
	draft-tuexen-sctp-udp-encaps-07

