RANGER, VET, SEAL and IRON

IETF77
Fred L. Templin
fred.ltemplin@boeing.com
Routing and Addressing in Networks with Global Enterprise Recursion (RANGER) – RFC5720

- Recursively-nested connected local network regions joined by Enterprise Border Routers (EBRs) – a network-of-networks
- each distinct local network region is an “enterprise” unto itself
- PI and PA addressing, multihoming, traffic engineering, etc.
- PI prefixes are *portable* - no need for autoconfiguration
- example use cases:
 - Internet interdomain core
 - large academic campus network
 - corporate enterprise network
 - ISP networks
 - SOHO networks
 - civil aviation networks
 - Mobile Ad-hoc Networks
How RANGER Works

- RANGER “concatenates” networks with recursive re-encapsulation
- Example: IPv4 for local routing and addressing; IPv6 for global routing and addressing (other IPvX/IPvY combinations also supported)

Routing scaling through local routing regions (RLOCs) with mapping system for global addresses (EIDs)
- Global communications through recursive re-encapsulation across local routing regions (EIDs)
- VET and SEAL

Copyright © 2010 Boeing. All rights reserved.
Friday, March 26, 2010
RANGER “concatenates” networks with recursive re-encapsulation
Example: IPv4 for local routing and addressing; IPv6 for global routing and addressing (other IPvX/IPvY combinations also supported)

- Routing scaling through local routing regions (RLOCs) with mapping system for global addresses (EIDs)
- Global communications through recursive re-encapsulation across local routing regions (EIDs)
- VET and SEAL
• RANGER “concatenates” networks with recursive re-encapsulation
• Example: IPv4 for local routing and addressing; IPv6 for global routing and addressing (other IPvX/IPvY combinations also supported)

• Routing scaling through local routing regions (RLOCs) with mapping system for global addresses (EIDs)
• Global communications through recursive re-encapsulation across local routing regions (EIDs)
• VET and SEAL
How RANGER Works

- RANGER “concatenates” networks with recursive re-encapsulation.
- Example: IPv4 for local routing and addressing; IPv6 for global routing and addressing (other IPvX/IPvY combinations also supported).

Routing scaling through local routing regions (RLOCs) with mapping system for global addresses (EIDs).
- Global communications through recursive re-encapsulation across local routing regions (EIDs).
- VET and SEAL.
• RANGER “concatenates” networks with recursive re-encapsulation
• Example: IPv4 for local routing and addressing; IPv6 for global routing and addressing (other IPvX/IPvY combinations also supported)

How RANGER Works

• Routing scaling through local routing regions (RLOCs) with mapping system for global addresses (EIDs)
• Global communications through recursive re-encapsulation across local routing regions (EIDs)
• VET and SEAL
• RANGER “concatenates” networks with recursive re-encapsulation
• Example: IPv4 for local routing and addressing; IPv6 for global routing and addressing (other IPvX/IPvY combinations also supported)

• Routing scaling through local routing regions (RLOCs) with mapping system for global addresses (EIDs)
• Global communications through recursive re-encapsulation across local routing regions (EIDs)
• VET and SEAL
• RANGER “concatenates” networks with recursive re-encapsulation
• Example: IPv4 for local routing and addressing; IPv6 for global routing and addressing (other IPvX/IPvY combinations also supported)

• Routing scaling through local routing regions (RLOCs) with mapping system for global addresses (EIDs)
• Global communications through recursive re-encapsulation across local routing regions (EIDs)
• VET and SEAL
RANGER “concatenates” networks with recursive re-encapsulation
Example: IPv4 for local routing and addressing; IPv6 for global routing and addressing (other IPvX/IPvY combinations also supported)

Routing scaling through local routing regions (RLOCs) with mapping system for global addresses (EIDs)
Global communications through recursive re-encapsulation across local routing regions (EIDs)
VET and SEAL
How RANGER Works

- RANGER “concatenates” networks with recursive re-encapsulation
- Example: IPv4 for local routing and addressing; IPv6 for global routing and addressing (other IPvX/IPvY combinations also supported)

Routing scaling through local routing regions (RLOCs) with mapping system for global addresses (EIDs)
- Global communications through recursive re-encapsulation across local routing regions (EIDs)
- VET and SEAL
Virtual Enterprise Traversal (VET) – RFC5558

- Traversal of a single network within the recursive nesting
- Automatic point-to-multipoint tunneling (NBMA)
- Discover enterprise network exit routers:
 - default routes through border routers on provider networks
 - more-specific routes through border routers on peer networks
 - Secure Redirection
- Router-to-router tunneling
- Only border routers are modified
- Version 2 of ISATAP
How VET Works

Provider Network
Border Routers

IPv4 transit network

Peer Network
Border Router

IPv6 edge network

IPv6 edge network

Copyright © 2010 Boeing. All rights reserved.

Friday, March 26, 2010
How VET Works

Provider Network
Border Routers

IPv4 transit network

Peer Network
Border Router

IPv6 edge network

IPv6 edge network
How VET Works

IPv6 edge network
IPv4 transit network
Peer Network Border Router
IPv6 edge network
Provider Network Border Routers
IPv6 edge network
How VET Works

IPv4 transit network

Provider Network
Border Routers

IPv6 edge network

Peer Network
Border Router

IPv6 edge network
How VET Works

IPv6 edge network

IPv4 transit network

Provider Network
Border Routers

Peer Network
Border Router

IPv6 edge network

IPv6 edge network
How VET Works

IPv6 edge network

IPv4 transit network

Provider Network
Border Routers

Peer Network
Border Router

IPv6 edge network

IPv6 edge network
How VET Works

IPv4 transit network

Provider Network
Border Routers

Peer Network
Border Router

IPv6 edge network

IPv6 edge network

IPv4 transit network

IPv6 edge network

IPv6 edge network
- tunnel encapsulation overhead reduces path MTU
- avoid path MTU discovery if possible due to unnecessary packet loss; black-holing due to ICMP filtering
- have the tunnel do transparent link-layer adaptation
- tunnel ingress discovers MRU of tunnel egress
- end result is 1500 and larger gets through

▶ SEAL supports synchronization between tunnel endpoints, so off-path DOS attacks are prevented
▶ SEAL also supports “semi-stateless” mode with no fragmentation/reassembly but robust MTU discovery
How SEAL Works

Provider Network
Border Routers

IPv4 transit network

Peer Network
Border Routers

IPv6 edge network

IPv6 edge network
How SEAL Works

Provider Network
Border Routers

IPv4 transit network

Peer Network
Border Routers

IPv6 edge network

IPv6 edge network
How SEAL Works

Provider Network
Border Routers

IPv4 transit network

Peer Network
Border Routers

IPv6 edge network

IPv6 edge network
How SEAL Works

Provider Network
Border Routers

IPv4 transit network

Peer Network
Border Routers

IPv6 edge network

IPv6 edge network
How SEAL Works

Provider Network
Border Routers

IPv4 transit network

Peer Network
Border Routers

IPv6 edge network

IPv6 edge network
How SEAL Works

Provider Network
Border Routers

IPv4 transit network

Peer Network
Border Routers

IPv6 edge network

IPv6 edge network
How SEAL Works

Provider Network
Border Routers

IPv4 transit network

Peer Network
Border Routers

IPv6 edge network

IPv6 edge network
How SEAL Works

IPv6 edge network

IPv4 transit network

Provider Network
Border Routers

Peer Network
Border Routers

IPv6 edge network
How SEAL Works

IPv6 edge network

Provider Network
Border Routers

IPv4 transit network

Peer Network
Border Routers

IPv6 edge network

IPv6 edge network

IPv4 transit network

IPv6 edge network
The Internet Routing Overlay Network (IRON)

- RANGER overlay network over the Internet DFZ
- RLOC addresses in underlying network; EID addresses in overlay
- IRON router RIB has EID Virtual Prefix (VP)-to-RLOC mappings
- RIB includes manageable number of coarse-grained EID VPs (e.g., 100k ::/32's)
- More-specific EID prefixes added to router FIBs on-demand
- More-specific EIDs added only on routers that need them

➢ RIB loaded from centrally-managed file; no dynamic routing protocol needed
➢ Excellent scaling properties
IRON Routers

- IRON Routers (IRs) are tunnel endpoint routers
- IRs form the borders of the IRON; encapsulate inner EID-addressed packets in outer RLOC-addressed headers
- Different IR roles:
 - IR(VP) – an IRON router that holds a Virtual Prefix
 - IR(EID) – an IRON router that connects an EID-based enterprise network to the IRON
 - IR(GW) – an IRON router that relays packets between EID-based endpoints and DFZ-based endpoints
- A single IR can serve multiple roles
The IRON – IRON Routers Connected to the DFZ
EID End System to EID End System Example

Host: DFZ (RLOC)

IR(VP): □
IR(EID): ○
IR(DFZ): □
DFZ (RLOC)

IR(VP):
IR(EID):
IR(DFZ):
Host:
EID End System to EID End System Example

IR(VP):

IR(EID):

IR(DFZ):

Host:
EID End System to EID End System Example

IR(VP):
IR(EID):
IR(DFZ):
Host:

DFZ
(RLOC)
EID End System to EID End System Example

DFZ (RLOC)

IR(VP):
IR(EID):
IR(DFZ):
Host:
RLOC End System to EID End System Example

IR(VP):
IR(EID):
IR(DFZ):
Host:
RLOC End System to EID End System Example

DFZ (RLOC)

IR(VP):
IR(EID):
IR(DFZ):
Host:

Friday, March 26, 2010
RLOC End System to EID End System Example

DFZ (RLOC)

IR(VP):
IR(EID):
IR(DFZ):
Host:
RLOC End System to EID End System Example

DFZ (RLOC)

IR(VP):
IR(EID):
IR(DFZ):
Host:
RLOC End System to EID End System Example

DFZ
(RLOC)

IR(VP):

IR(EID):

IR(DFZ):

Host:
RLOC End System to EID End System Example

DFZ (RLOC)

IR(VP):
IR(EID):
IR(DFZ):
Host:
IRON Scaling

• VPs:
 • Assume $O(100K)$ VPs (e.g., ::/32s)
 • Assume IRON RIB changes only very rarely
 • RIB size is 100K entries – fully populated in each IR

• EIDs:
 • Assume $O(100K)$ EID prefixes per VP
 • Yields 10^{10} EID prefixes in the IRON
 • Populated to IR FIBs on-demand

• RIB Size: 100K VPs in each IR
• FIB Size: 100K EID prefixes + 100K VPs = 200K
Civil Aviation Example

Global Internet (IPv6)

Global ATN Backbone Routing and Addressing Domain (IPv4)

Air Traffic Control Functional Domain

ATC Workstation

European-Regional ANSP

Asian-Regional ANSP

US-Regional ANSP

Friday, March 26, 2010
Civil Aviation Example

Asian-Regional ANSP

US-Regional ANSP

Global ATN Backbone Routing and Addressing Domain (IPv4)

Global Internet (IPv6)

IPv6

IPv6

IPv6

European-Regional ANSP

ATC Workstation

Air Traffic Control Functional Domain

Global Internet (IPv6)
Global ATN Backbone Routing and Addressing Domain (IPv4)

Asian-Regional ANSP

European-Regional ANSP

US-Regional ANSP

Global Internet (IPv6)

Air Traffic Control Functional Domain

ATC Workstation
Civil Aviation Example

Global Internet (IPv6)

Asian-Regional ANSP

US-Regional ANSP

Global ATN Backbone Routing and Addressing Domain (IPv4)

Air Traffic Control Functional Domain

European-Regional ANSP
Routing & Addressing in Next Generation Enterprises (RANGER)
- Network-of-networks architecture
- Minimal touch-points (border routers only)
- No changes to most hosts and routers
- Fully-provisioned IP services; balanced blend of tunneling, translation and native
- Gradual integration of IPv6
 - Customer-driven requirements lead policy and strategy
 - IPv6 and IPv4 in peaceful co-existence
 - It’s not an “either-or” decision
- Tangible Benefits
 - Secure Mobile Architecture (SMA)
 - Simplified management
 - Logical partitioning
 - Traffic engineering
 - End-to-end addressing
 - Mobility and multihoming
Routing & Addressing in Next Generation Enterprises (RANGER)
- Network-of-networks architecture
- Minimal touch-points (border routers only)
- No changes to most hosts and routers
- Fully-provisioned IP services; balanced blend of tunneling, translation and native

Gradual integration of IPv6
- Customer-driven requirements lead policy and strategy
- IPv6 and IPv4 in peaceful co-existence
- It’s not an “either-or” decision

Tangible Benefits
- Secure Mobile Architecture (SMA)
- Simplified management
- Logical partitioning
- Traffic engineering
- End-to-end addressing
- Mobility and multihoming
Enterprise Network Example

- Routing & Addressing in Next Generation Enterprises (RANGER)
 - Network-of-networks architecture
 - Minimal touch-points (border routers only)
 - No changes to most hosts and routers
 - Fully-provisioned IP services; balanced blend of tunneling, translation and native
- Gradual integration of IPv6
 - Customer-driven requirements lead policy and strategy
 - IPv6 and IPv4 in peaceful co-existence
 - It’s not an “either-or” decision
- Tangible Benefits
 - Secure Mobile Architecture (SMA)
 - simplified management
 - logical partitioning
 - traffic engineering
 - end-to-end addressing
 - mobility and multihoming
• Routing & Addressing in Next Generation Enterprises (RANGER)
 • Network-of-networks architecture
 • Minimal touch-points (border routers only)
 • No changes to most hosts and routers
 • Fully-provisioned IP services; balanced blend of tunneling, translation and native
• Gradual integration of IPv6
 • Customer-driven requirements lead policy and strategy
 • IPv6 and IPv4 in peaceful co-existence
 • It’s not an “either-or” decision
• Tangible Benefits
 • Secure Mobile Architecture (SMA)
 • simplified management
 • logical partitioning
 • traffic engineering
 • end-to-end addressing
 • mobility and multihoming
• Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)
 [Link](http://www.ietf.org/rfc/rfc5214.txt)
• Routing and Addressing in Networks with Global Enterprise Recursion (RANGER)
 [Link](http://www.ietf.org/rfc/rfc5720.txt)
• RANGER Scenarios
 [Link](http://tools.ietf.org/html/draft-russert-rangers)
• Virtual Enterprise Traversal (VET)
 [Link](http://www.ietf.org/rfc/rfc5558.txt)
 [Link](http://tools.ietf.org/html/draft-templin-intarea-vet)
• Subnetwork Encapsulation and Adaptation Layer (SEAL)
 [Link](http://www.ietf.org/rfc/rfc5320.txt)
 [Link](http://tools.ietf.org/html/draft-templin-intarea-seal)
• The Internet Routing Overlay Network (IRON)
 [Link](http://tools.ietf.org/html/draft-templin-iron)