Clock Rate

- The clock rate is the multiplier used to convert a wallclock value (in seconds) to an equivalent RTP timestamp (without the random offset).
- The following data uses the clock rate as unit:
 - RTP timestamp in the RTP packet
 - RTP timestamp in SR RTCP packet
 - Interarrival jitter in RR RTCP packet
 - Timestamp and jitter carried in other RTCP packets.
The Problem

- Using multiple clock rates in the same RTP session is underspecified:
- Some implementations use a different SSRC for each clock rate.
- Some implementations change the clock rate without changing the SSRC and use monotonic RTP timestamps.
- Some implementations change the clock rate without changing the SSRC but use non-monotonic RTP timestamps.
The consequences

- Depending on the method used by the RTP Sender:
 - It can be difficult to synchronize multiple sessions.
 - The jitter calculation can be incorrect
 - The interpretation of the jitter can be incorrect.
Proposals (1)

- New I-D updates RFC 3550.
- Using different SSRC for different clock rates is mandatory when using RTCP.
- Questions:
 Can the SSRC be reused?
 If not, should a BYE be sent?
Proposals (2)

- Using SSRC for different clock rates is recommended when not using RTCP but may use non-monotonic timestamps in the same SSRC.

The consensus is that using different SSRC is the correct way to use clock rates, but non-monotonic timestamp is easier to implement for implementations not using RTCP.
Proposals (3)

- The compound RTCP packet send by an RTP Sender contains one SR packet for each SSRC sent during the last interval, the first SR packet been for the current SSRC.
- The rapid synchronization RTP header can also be used to accelerate synchronization.
Proposals (4)

• An RTP Receiver must handle multiple SSRC or non-monotonic timestamps.

• Questions:
 Should we care about legacy implementations implementing multiple clock rates with monotonic timestamps?
 Perhaps asking SIPit participants what existing implementations are doing?
Next

- WG Item?
- Questions?
Monotonic Timestamps

• The monotonic timestamp method uses the following formula:

\[
\text{timestamp} = \text{previous_timestamp} + (\text{current_capture_time} - \text{previous_capture_time}) \times \text{current_clock_rate}
\]

• The jitter formula gives incorrect values during the transition

• For the correct formula for jitter to work, the packet must arrive in the same order and not been lost.
Non-monotonic Timestamps

• The non-monotonic timestamp method uses the following formula:
 \[\text{timestamp} = \text{capture_time} \times \text{clock_rate} \]

• The jitter calculation is correct with this formula, and does not depend on the ordering of packets.

• The RTP timestamp does not increase monotonically but RFC 3550 states that this is the wallclock that must increase monotonically, not the RTP timestamp