Stateless Source Address Mapping Algorithm for ICMPv6 Packets

X. Li, C. Bao, D. Wing, R. Vaithianathan
2010-03-25
Outline

• Problem Statement
• Analysis of the Possible Approaches
• Stateless Source Address Mapping Algorithms for ICMPv6 Packets
• Recommendations
“A future work” in xlate

- IP/ICMP Translation Algorithm
draft-ietf-behave-v6v4-xlate-11
 - 4.3. Translating ICMPv6 Error Messages into ICMPv4
 - ……
 - Note that the IPv6 addresses in the IPv6 header may not be IPv4-translatable addresses and there will be no corresponding IPv4 addresses. In this case, the translator can do stateful translation. A mechanism by which the translator can instead do stateless translation is left for future work.
Problem statement

This is the requirement.
Analysis of the Current Approaches

• Configure IPv6 Routers Using IPv4-translatable Addresses
 – Use Public IPv4 Addresses
 – Use RFC1918 Addresses

• Perform Stateful Source Address Mapping for ICMPv6 Packets
 – Use Public IPv4 Addresses
 – Use RFC1918 Addresses

• Use Translator's Interface Address to Represent Source Address for ICMPv6 Packets
Comparisons

• Configuring IPv6 routers using IPv4-translatable addresses
 – Renumbering of all the IPv6 interface addresses in all routers.
 – If public IPv4 address is used, it is a waste of the resource.
 – If the IPv6 routers forward packets from multiple translators with different prefixes, there is no way to achieve this.

• Performing stateful source address mapping for ICMPv6 Packets
 – For stateless-only translator, not worth the cost.

• Using translator's interface address to represent source address for ICMPv6 Packets
 – Different non IPv4-translatable addresses will be mapped to same IPv4 address. (routing loop?)
Stateless Source Address Mapping Algorithms for ICMPv6 Packets

- Not to be dropped by IPv4 routers due to failure of security checks such as uRPF checks.
- Content in the ICMP message is more important than who generating the content.
- Public IPv4 addresses SHOULD NOT be wasted.
- Identify this special translation for everybody.
- Different non IPv4-translatable IPv6 addresses have different IPv4 address representations for a specific application (traceroute).
Choosing an IPv4 /24 Address Block

- Use Public IPv4 Addresses
 - Waste public IPv4
 - Can only be identified by admin

- Use RFC1918 Addresses
 - May cause confusion
 - Can only be identified by admin

- Ask IANA for allocating an IPv4 Well-Known Prefix
 - /24
Design an Algorithm to Generate the Last Octet of IPv4 /24

- Randomly Generate the Last Octet

- Copy Hop Count into Last Octet

- Hashing of the IPv6 address to generate Last Octet
Discussions

• Randomly Generate the Last Octet
 – Easy, may have collision, or need to have some states

• Copy Hop Count into Last Octet
 – Almost unique, stateless, identify the hop count.

• Hashing of the IPv6 address to generate Last Octet
 – Almost unique based on the efficiency of the hashing algorithm, fast, stateless.
Recommendations

• Asking IANA for an IPv4 /24 as a "Well-Known Prefix"

• Last /24 is configurable
 – Random
 – Hop Count
 – Hashing