Architectural Components and
Resource Control Foundation in
Data-Oriented P2P

Richard Alimi
Y. Richard Yang

IETF 77 DECADE
March 26, 2010



Basic Architecture of Data-Oriented
P2P Content Distribution

Each node connects to a set (e.g., ~¥30-100) of
neighbors (typically do not need to be a
strongly structured topology such as a tree)

Chop data into chunks/pieces (say 256KB, or
1/3 sec. video data)

Nodes exchange chunk availability using a
data structure called BitMap or BufferMap

Nodes request/push data with neighbors



Two Major Architectural Components of
Data-Oriented P2P Content Distribution

Topology
(Peer)
Management

Chunk
(Data)
Scheduling

Who connects to whom? Includes
- connectivity among peers;
- who connect to sources/super nodes/CDN.

Who serves whom at what rates? Includes
- A downloader requests from which uploaders

- An uploader serves which downloaders at what
rates

We can consider both components as conducting resource control

on resources, including

e connection slots

 upload/download bandwidth

* storage capability



Why is BW Resource Control Important and
Fundamental in P2P Systems?

e Because BW resource control is fundamental
for

— Robustness against selfish behaviors
— Robustness against attacks

— Construction of efficient flow distribution patterns
(in particular for streaming)



Robust Against Selfish Behaviors

e P2P systems depend on user contributions

 Non-contributing users can be a serious problem

— 70% of Gnutella users share no files and nearly 50% of all
responses are returned by the top 1% of sharing hosts

e BW resource control is a major mechanism to design
incentives and handle selfish behaviors

— BitTorrent Tit-for-Tat
e Attacked by BitTyrant

— Provable Proportional Sharing [STOC’07; SIGCOMM’08]



Robust Against DoS Attacks

* Arecent study [IMC’08] showed how to attack
the Akamai streaming servers due to sharing
of server bandwidth but no isolation

— “We demonstrate that it is possible to impact
arbitrary customers’ streams in arbitrary network
regions ...” [IMC’08]



Build Efficient Flow Patterns

 High performing P2P content distribution
systems build effective flow patterns

 The flow patterns depend on application types
and can be the key “secret sauce” of different

designhers

 We use P2P Live Streaming as an example



P2P Live Streaming Foundation

* Assume that each peer u allocates capacity C,

to a connected neighbor v
* We call C, the link capacity of the link u to v

* Constraints that {C_ } should satisfy:

e Quota: sum of C, over all neighbors {v} of u should be
less than the upload capacity of u

* Flow Pattern: For any peer p, the maximum flow
(minimum cut) from source s to destination peer p,
under link capacity constraints, should be at least the
streaming rate R



Live Streaming Feasibility Theorem

e |f for every (destination) peer p, the
maximum flow computed without other

destination peers can support streaming
rate R, then the streaming system is

feasible.



From Theorem to Engineering Design

3 Key insights from the foundation

— |t is fundamental that we allocate connectivity and BW to
edge capacities for P2P Live Streaming in the correct way

— There are many design options and algorithms to achieve
the design

e Examples
— Flash crowd acceleration [Wang et al. ‘10]
— Enterprise coordination [Liu et al. ‘10]
— Minimizing server injection points [Alimi et al. “10]



Why Related with DECADE?

e A DECADE server conducts resource control
just as a peer

— Controls connectivity to other entities (e.g., peers
and/or DECADE servers

— Uploads to others
— Downloads from others
— Manages storage/disk BW

e |tisimportant that DECADE design provides
scalable, fundamental “knobs and dials”.



