DTN Network Management

William Ivancic (NASA GRC)

Disclaimer: Opinions expressed in this document are of the individuals, and not necessarily of their sponsoring organization.

Network Management Requirements draft-ivancic-dtnrg-network-management-reqs-00

- Draft expired
- Approached by chairs to split into "scenarios" and "requirements" documents
- 1. Introduction
- 2. DTN Scenarios
- 3. General Requirement
 - Local Network Management
 - Remote Network Management
 - Security
- 4. System Characteristics
 - 1. Bundle Processing
 - 2. Convergence Layers
 - 3. Multi-Homing
 - 4. Others
- 5. Network Management Utilities
- 6. Security Considerations
- 7. IANA Considerations

- DTN Scenarios (separate doc)
- Requirements (separate doc)
 - General Requirement
 - Local Network Management
 - Remote Network
 Management
 - Security
 - System Characteristics
 - Bundle Processing
 - Convergence Layers
 - Multi-Homing
 - Others
- Network Management Utilities (perhaps a future document?)

Terminology

- "Local Management"
 - One can access a the device by being physically at the devices (i.e. console port) or via real-time access such as via a connected IP network.
 - Here we assume high bandwidth, no disruption and insignificant delay
- "Remote Management"
 - Implies managing a DTN node over a DTN network.
 - Assumes that the systems may experience and or all of the following: long propagation delays, long periods of disruption, long periods of disconnection and operate over low bandwidths.

Strategy

- Ohio University => ION, Glenn Research Center => DTN2
- Get something up and useful that will do:
 - Performance measurements
 - Trouble shooting and debugging
 - Remote configuration
- Reuse code if possible
- "Local Management"
 - DTN2 uses local SNMP daemon
 - ION uses ION tools
- "Remote Management"
 - ION exploring Diagnostic Interplanetary Network Gateway protocol (DING)
 - DTN2 using bundle of JSON (JavaScript Object Notation) scripts
 - Lightweight data-interchange format. It is easy for humans to read and write. It is easy for machines to parse and generate.

DTN2 Basic Network Configuration

(NASA Glenn Research Center)

ION Basic Network Configuration

DTN Network Management - Monitoring (Ohio University)

DING

- draft-irtf-dtnrg-ding-network-management-02
- Outlines a suggested monitoring approach
- Relies on MIB/ASN.1 description of monitored objects
- Well understood, lots of tools available
- Allows for easy use of SNMP in local management
- Remote monitoring over DTN
- Subscription model similar to telemetry, but more flexible
- Gateway to SNMP management on the Internet side of DTN
- Currently revising the ID with feedback received so far

Research Issues

- Data compression on the DTN link
- RMON-style rate computation at the remote end?
- How to correctly time-stamp data (and get standard monitoring stations to understand such a time stamp)
- Treatment of SNMP Traps

DTNbone

- Current DTNbone is generally always connected with a meshed or star topology (single hop)
- Need some stable, multi-hop system with disconnection.
- Mirror-image test networks at OU and GRC (ION/DTN2)
- Link profiles with delay _and_ disconnection (not just errors)
- Enables true store-and-forward testing
- Network management
 - Remote tracking of bundle traffic*
 - Troubleshooting *
 - Remote configuration control (future)*
 - Should be extremely useful for NASA multi-center interoperability tests

ION DTNbone Always Available Disconnected Network NASA Glenn Research Center, Ohio University

KEY: <Computer Name> <DTN Name> <IPN>

- P1 Connected order of minutes, Disconnected order of minutes
- P2 Connected 10 s of minutes, Disconnected 10s of minutes
- P3 Always Connected
- P4 Connected Route Robin Every 10s of minutes for order of minutes, or contact times consistent with Earth to Mars Relay
- P5 Connected Round Robin Every few minutes for a range of minutes, or contact times consistent with Mars Relay to Rover
- P6 Connected Round Robin Every 10s of minutes for order of minutes, or contact times consistent with Earth to Lunar Relay
- P7 Connected Round Robin Every few minutes for range of minute, or contact times consistent with Earth to Lunar Relay to Rover

GRC Network Management Software

- SNMP Agent and associated software (local management)implemented in DTN2 and ready for distribution
 - Fixed / Cleaned up MIBs
 - Distribution likely a separate branch in SourceForge
 - ??? Suggestions ???
- Network Manager Server/Proxy and Remote Monitor Client via Browser not yet ready for release.

Other Items

IPN Naming in DTN2
DTN Implementation Capabilities Database

IPN Naming in DTN2

- NASA GRC personnel have implemented and are in final testing of IPN naming (and CBHE) for DTN2
 - ION assumes Compressed Bundle Header Encoding (CBHE) when IPN naming is used
 - Therefore, DTN2 implementation assumes the same.
 - As of 24 March 2010, GRC's DTN Bone node is running code which supports CBHE/IPN naming
 - We would like to see the node used to pass bundles (as a sort of stepping stone)
 - We would like to see the node used with normal dtn:// naming to show it's still stable
 - IPN id is 17 and GRC DTNbone machine is 192.55.90.165
 - Contact Joseph Ishac [jishac@nasa.gov] to add routes
- Distribution via ??? Suggestions???
 - SourceForge (Branch)

DTN Implementation Capabilities Database

- ION, DTN2, Spindle, etc... are all designed with a particular operation environment in mind.
- Each has design limitations known (or unknown) by the implementers, but not necessarily the users.
 - (e.g. ION BAB is currently limited to 64 KB bundles, some implementations are not necessarily designed to mover extremely large bundles)
- It would be nice to have a summary of the design criteria and capability matrix (on the wiki) for each implementation in order to aid in interoperability testing