An Extension of HIP Base Exchange to Support Identity Privacy

draft-zhang-hip-privacy-protection-00

Dacheng Zhang
<zhangdacheng@huawei.com>

Miika Komu
<miika@iki.fi>
Motivation

• HIP leaks identity-related information even though ESP protects the confidentiality of the data-plane
• In the current version of base exchange (BEX), the identities (HITs and HIs) of communicating partners are transported in plain text
• An active or passive attacker can eavesdrop a base exchange and track the identities and movement of communicating end-hosts
• As a consequence, privacy is hindered because the connectivity of a host can be traced securely
• Anonymity vs. identity protection
Solutions for Identity Privacy

• Ephemeral identities
 – Thrown away when used once
 – More overhead to generate new keys
 – Anonymous authentication

• Encrypted certificates and public keys
 – Non-anonymous authentication with delegation
 – Sent over BEX using ephemeral identities
 – Requires presharing of public keys

• Scrambled identities (aka “blind”)
 – Optimization of the previous approach and no certificates
 – Only HITs are preshared
The BLIND Extension

• The proposed solution is based on the BLIND extension from Ylitalo et al
• The solution attempts to address the privacy issue by scrambling HI(T)s with nonces and exposing the real HI(T)s in the encrypted parts of HIP packets
• The unscrambled HITs have to be known in advance (for full identity protection)
• Scrambling of an identity is denoted by a flag
Generation of Scrambled HITs

• Before sending out an I1 packet, an initiator first selects a random number nonce N
• The initiator generates a scrambled HIT for it by SHA-1 hashing the concatenation of N and its HIT (HIT-I), that is, SHA-1(N, HIT-I)
• If the identity privacy of the responder has to be protected, the initiator generates a scrambled HIT for the initiator in the same way
Next Revision of the Draft

- Is this work interesting?
- Should we have a specific use scenario?
- Location privacy using HIP/ESP Relay?
- HICCUPS compatibility
- Analyze BLIND dependency to algo agility
- BLIND-based mobility
- Encrypted pub keys + certs a better than BLIND?
 - HIP-capable middleboxes can authenticate at least the ephemeral identities
 - Midbox throttles throughput or drops the connection
Thank you

www.huawei.com