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The origin of “TCP friendly”

 

                                                             [1997]
 Inspired “TCP Friendly Rate Control”

 [Mahdavi&Floyd '97]
 Defined the language

 Became the IETF dogma

Rate= MSS
RTT 0.7 p 



  

The concept was not at all new

 10 years earlier it had been assumed that:
 Gateways (routers&switches) are simple

 Send the same signals (loss, delay) to all flows
 End-systems are more complicated

 Equivalent response to congestion signals 
 Which was defined by Van's TCP  (BSD, 1987)
 Pushed BSD as a reference implementation

 This is the Internet's “sharing architecture”



  

Today TCP Friendly is failing

 Prior to modern stacks
 End-system bottlenecks limited load in the core
 ISPs could out build the load
 No sustained congestion in the core
 Masked weaknesses in the TCP friendly paradigm

 Modern stacks 
 May be more than 2 orders of magnitude faster
 Nearly always cause congestion



  

Old TCP stacks were lame

 Fixed size Receive Socket Buffer
 8kb, 16kB and 32kB are typical

 One buffer of data for each RTT
 250 kB/s or 2 Mb/s on continental scale paths

 Some users were bottlenecked at the access link
 AIMD works well with the large buffer routers 

 Other users were bottlenecked by the end-system
 Mostly due to socket buffer sizes

 The core only rarely exercised AIMD



  

Modern Stacks

 Both sender and receiver side TCP autotuning
 Dynamically adjust socket buffers
 Multiple Mbyte maximum window size

 Every flow with enough data:
 Raises the network RTT and/or
 Raises the loss rate
 e.g. causes some congestion somewhere

 Linux as of 2.6.17 (~Aug 2004)
 Ported from Web100
 Now: Windows 7, Vista, MacOS, *BSD



  

Problems

 Classic TCP is window fair
 Short RTT flows clobber all others

 Some apps present infinite demand
 ISPs can't out build the load

 TCP's design goal is to cause congestion
 Meaning queues and loss everywhere

 Many things run much faster
 But extremely unpredictable performance
 Some users are much less happy

 See backup slides (Appendix)



  

Change the assumption

 Network controls the traffic
 Segregate the traffic by flow
 With a separate (virtual) queue for each
 Use a scheduler to allocate capacity
 Don't allow flows to (significantly) interact
 Separate AQM per flow

 Different flows see different congestion 



  

This is not at all new

 Many papers on Fair Queuing&variants
 Entire SIGCOMM sessions

 The killer is the scaling problem associated with 
per flow state



  

Approximate Fair (Dropping)

 Follows from Pan et al CCR April 2003
 Good scaling properties

 Shadow buffer samples forwarded traffic
 On each packet

 Hardware TCAM counts matching packets
 Estimates flow rates

 Estimates virtual queue length
 Very accurate for high rate flows

 Implements rate control and AQM
 Per virtual queue



  

Flow Isolation

 Flows don't interact with each other
 Only interact w/ scheduler and AQM

 TCP doesn't (can't) determine rate
 TCP's role is simplified

 Just maintain a queue 
 Control against AQM
 Details are (mostly) not important



  

The scheduler allocates capacity

 Should use many inputs
 DSCP  codepoint
 Traffic volume

 See: draft-livingood-woundy-congestion-mgmt-
03.txt

 Local congestion volume
 Downstream congestion volume  (Re-Feedback)

 Lots of possible ICCRG work here



  

Cool Properties

 More predictable performance
 Can monitor SLAs

 Instrument scheduler parameters 

 Does not depend on CC details
 Aggressive protocols don't hurt

 Natural evolution from current state
 Creeping transport aggressiveness
 ISP defenses against creeping aggressiveness 



  

How aggressive is ok?

 Discarding traffic at line rate is easy
 Need to avoid congestive collapse

 Want goodput=bottleneck BW

 Must consider cascaded bottlenecks
 Don't want traffic that consumes resources at one 

bottleneck to be discarded at another
 Sending data without regard to loss is very bad

 But how much loss is ok?



  

Conjecture

 Average loss rate less than 1 per RTT is ok
 Some RTTs are lossless, so the window fits within 

the pipe
 Other RTTs only waste a little bit of upstream 

bottlenecks

 Rate goes as 1/p

 NB: higher loss rates may also be ok
 but the argument isn't as simple



  

Relentless TCP [2009]

 Use packet conservation for window reduction
 Reduce cwnd by the number of losses
 New window matches actual data delivered

 Increase function can be almost anything
 Increases and losses have to balance

 Therefor the increase function directly defines the 
control function/model

 Default is standard AI
 Increase by one each RTT)
 Resulting model is 1/p



  

Properties

 TCP part of control loop has unity gain
 Network drops/signals what it does not want to see 

on the next RTT
 e.g. if 1% too fast, drop %1 of the packets

 Greatly simplifies Active Queue Management
 Very well suited for *FQ

 The deployment problem is “only” political
 Crushes networks that don't control their traffic



  

Closing

 The network needs to control the traffic
 Transport protocols need to be even more 

aggressive



  



  

Appendix

 Problems cause by new stacks



  

Problem 1

 TCP is window fair
 Tends to equalize window in packets
 Grossly unfair in terms of data rate
 Short RTT flows are brutally aggressive
 Long RTT flows are vulnerable

 Any flow with a shorter RTT preempts long flows 



  

Example

 2 flows old TCP (32kB buffers)
 100 Mb/s bottleneck link

 Flow 1, 10 ms RTT, expected rate 3 MB/s
 Flow 2, 100 ms RTT, expected rate 0.3 MB/s
 Both: no interaction – they can't fill the link

 Both users see predictable performance



  

With current stacks

 Auto tuned TCP buffers
 Still 100 Mb/s bottleneck (12.5 MB/s)

 Flow 1, 10 ms RTT, expected rate 12 MB/s
 Flow 2, 100 ms RTT, expected rate 8(?) MB/s
 Both at the same time

 Flow 1, expected rate 10(?) MB/s
 Flow 2, expected rate 1(?) MB/s

 Wide fluctuations in performance!



  

Problem 2

 Some apps (e.g. p2p) present “infinite” load
 Consider peer-to-peer apps as:

 Distributed shared file system
 Everybody has a manually manged local cache

 As the network gets faster
 Cheaper to fetch on whim and discard carelessly
 Presented load rises with data rate
 Faster network means more wasted data



  

Problem 3

 TCP's design goal is to fill the network
 By causing a queue at every bottleneck

 Controlling hard against drop tail
 RED (AQM) really hard to get right

 You don't want to share with a non-lame TCP
 Everyone has experienced the symptoms

 TCP friendly is an oxymoron
 Me, at the last IETF



  

Impact of the new stacks

 Many things run faster 
 Higher delay or loss nearly everywhere

 Intermittent congestion in many parts of the core
 Impracticable to out-build the load
 The network needs QoS

 Very unstable or unpredictable TCP 
performance
 Vastly increased interactions between flows



  

The business problem

 Unpredictable performance is a killer
 Unacceptable to users
 Can't write SLAs to assure performance

 A tiny minority of users consume the majority of 
the capacity
 Trying to out-build the load can be very expensive
 And may not help anyhow



  

ISPs need to do something

 But there are no good solutions
 ISP are doing desperate (&misguided) things

 Throttle high volume users or apps to provide cost 
effective and predictable performance for small 
users



  



  

TCP is still lame

 Cwnd (primary control variable) is overloaded
 Many algorithms tweak cwnd

 e.g. burst suppression

 Long term consequences of short term events
 May take 1000s of RTT to recover from 

suppressing one burst

 Extremely subtle symptoms
 Not generally recognized by the community 



  

Desired fix

 Replace cwnd by (cwnd+trim) “everywhere”
 Cwnd is reserved for primary congestion control
 Trim is used for all other algorithms

 Signed
 Converges to zero over about one RTT

 Would expect more predictable and better 
modeled behavior



  

A slightly better fix

 trim can be computed implicitly
 It is the error between cwnd and flight_size

 On each ACK:

 trim = flight_size – cwnd
 Existing algorithms update cwnd and/or trim



  

Even better

 The entire algorithm can be done implicitly

On each ACK compute:
      flight_size =  (Estimate of data in the network)

      delivered = (The quantity of data accepted by the receiver)

                     (= the change in snd.una, adjusted for SACK blocks)

      willsend = delivered

      If flight_size < cwnd: willsend = willsend + 1

      If flight_size > cwnd: willsend = willsend - ½ 

      heuristic_adjust(willsend) // Bursts suppression, paceing, etc

      send(willsend, socket_buffer)



  

Properties

 Strong packet conserving self-clock
 Three orthogonal subsystems

 Congestion control
 Average window size (&data rate)

 Transmission control
 Packet scheduling and burst suppression

 Retransmissions
 Reliable data delivery



  

Congestion control revisited

 Can use standard AIMD congestion control:

        On loss: cwnd = cwnd/2

           On ACK: cwnd = cwnd + (1/cwnd)

 Expect cleaner behavior than current stacks

 Can trivially use other algorithms
 No collisions with algorithms overloading cwnd 
 Unconstrained choices for both increase and 

decrease functions
 Huge research opportunities 
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