

Flow Isolation

Matt Mathis
ICCRG at IETF 77

3/23/2010
Anaheim CA

http://staff.psc.edu/mathis/papers
FlowIsolation20100323.{pdf,odp}

=

The origin of “TCP friendly”

 [1997]
 Inspired “TCP Friendly Rate Control”

 [Mahdavi&Floyd '97]
 Defined the language

 Became the IETF dogma

Rate= MSS
RTT 0.7 p 

The concept was not at all new

 10 years earlier it had been assumed that:
 Gateways (routers&switches) are simple

 Send the same signals (loss, delay) to all flows
 End-systems are more complicated

 Equivalent response to congestion signals
 Which was defined by Van's TCP (BSD, 1987)
 Pushed BSD as a reference implementation

 This is the Internet's “sharing architecture”

Today TCP Friendly is failing

 Prior to modern stacks
 End-system bottlenecks limited load in the core
 ISPs could out build the load
 No sustained congestion in the core
 Masked weaknesses in the TCP friendly paradigm

 Modern stacks
 May be more than 2 orders of magnitude faster
 Nearly always cause congestion

Old TCP stacks were lame

 Fixed size Receive Socket Buffer
 8kb, 16kB and 32kB are typical

 One buffer of data for each RTT
 250 kB/s or 2 Mb/s on continental scale paths

 Some users were bottlenecked at the access link
 AIMD works well with the large buffer routers

 Other users were bottlenecked by the end-system
 Mostly due to socket buffer sizes

 The core only rarely exercised AIMD

Modern Stacks

 Both sender and receiver side TCP autotuning
 Dynamically adjust socket buffers
 Multiple Mbyte maximum window size

 Every flow with enough data:
 Raises the network RTT and/or
 Raises the loss rate
 e.g. causes some congestion somewhere

 Linux as of 2.6.17 (~Aug 2004)
 Ported from Web100
 Now: Windows 7, Vista, MacOS, *BSD

Problems

 Classic TCP is window fair
 Short RTT flows clobber all others

 Some apps present infinite demand
 ISPs can't out build the load

 TCP's design goal is to cause congestion
 Meaning queues and loss everywhere

 Many things run much faster
 But extremely unpredictable performance
 Some users are much less happy

 See backup slides (Appendix)

Change the assumption

 Network controls the traffic
 Segregate the traffic by flow
 With a separate (virtual) queue for each
 Use a scheduler to allocate capacity
 Don't allow flows to (significantly) interact
 Separate AQM per flow

 Different flows see different congestion

This is not at all new

 Many papers on Fair Queuing&variants
 Entire SIGCOMM sessions

 The killer is the scaling problem associated with
per flow state

Approximate Fair (Dropping)

 Follows from Pan et al CCR April 2003
 Good scaling properties

 Shadow buffer samples forwarded traffic
 On each packet

 Hardware TCAM counts matching packets
 Estimates flow rates

 Estimates virtual queue length
 Very accurate for high rate flows

 Implements rate control and AQM
 Per virtual queue

Flow Isolation

 Flows don't interact with each other
 Only interact w/ scheduler and AQM

 TCP doesn't (can't) determine rate
 TCP's role is simplified

 Just maintain a queue
 Control against AQM
 Details are (mostly) not important

The scheduler allocates capacity

 Should use many inputs
 DSCP codepoint
 Traffic volume

 See: draft-livingood-woundy-congestion-mgmt-
03.txt

 Local congestion volume
 Downstream congestion volume (Re-Feedback)

 Lots of possible ICCRG work here

Cool Properties

 More predictable performance
 Can monitor SLAs

 Instrument scheduler parameters

 Does not depend on CC details
 Aggressive protocols don't hurt

 Natural evolution from current state
 Creeping transport aggressiveness
 ISP defenses against creeping aggressiveness

How aggressive is ok?

 Discarding traffic at line rate is easy
 Need to avoid congestive collapse

 Want goodput=bottleneck BW

 Must consider cascaded bottlenecks
 Don't want traffic that consumes resources at one

bottleneck to be discarded at another
 Sending data without regard to loss is very bad

 But how much loss is ok?

Conjecture

 Average loss rate less than 1 per RTT is ok
 Some RTTs are lossless, so the window fits within

the pipe
 Other RTTs only waste a little bit of upstream

bottlenecks

 Rate goes as 1/p

 NB: higher loss rates may also be ok
 but the argument isn't as simple

Relentless TCP [2009]

 Use packet conservation for window reduction
 Reduce cwnd by the number of losses
 New window matches actual data delivered

 Increase function can be almost anything
 Increases and losses have to balance

 Therefor the increase function directly defines the
control function/model

 Default is standard AI
 Increase by one each RTT)
 Resulting model is 1/p

Properties

 TCP part of control loop has unity gain
 Network drops/signals what it does not want to see

on the next RTT
 e.g. if 1% too fast, drop %1 of the packets

 Greatly simplifies Active Queue Management
 Very well suited for *FQ

 The deployment problem is “only” political
 Crushes networks that don't control their traffic

Closing

 The network needs to control the traffic
 Transport protocols need to be even more

aggressive

Appendix

 Problems cause by new stacks

Problem 1

 TCP is window fair
 Tends to equalize window in packets
 Grossly unfair in terms of data rate
 Short RTT flows are brutally aggressive
 Long RTT flows are vulnerable

 Any flow with a shorter RTT preempts long flows

Example

 2 flows old TCP (32kB buffers)
 100 Mb/s bottleneck link

 Flow 1, 10 ms RTT, expected rate 3 MB/s
 Flow 2, 100 ms RTT, expected rate 0.3 MB/s
 Both: no interaction – they can't fill the link

 Both users see predictable performance

With current stacks

 Auto tuned TCP buffers
 Still 100 Mb/s bottleneck (12.5 MB/s)

 Flow 1, 10 ms RTT, expected rate 12 MB/s
 Flow 2, 100 ms RTT, expected rate 8(?) MB/s
 Both at the same time

 Flow 1, expected rate 10(?) MB/s
 Flow 2, expected rate 1(?) MB/s

 Wide fluctuations in performance!

Problem 2

 Some apps (e.g. p2p) present “infinite” load
 Consider peer-to-peer apps as:

 Distributed shared file system
 Everybody has a manually manged local cache

 As the network gets faster
 Cheaper to fetch on whim and discard carelessly
 Presented load rises with data rate
 Faster network means more wasted data

Problem 3

 TCP's design goal is to fill the network
 By causing a queue at every bottleneck

 Controlling hard against drop tail
 RED (AQM) really hard to get right

 You don't want to share with a non-lame TCP
 Everyone has experienced the symptoms

 TCP friendly is an oxymoron
 Me, at the last IETF

Impact of the new stacks

 Many things run faster
 Higher delay or loss nearly everywhere

 Intermittent congestion in many parts of the core
 Impracticable to out-build the load
 The network needs QoS

 Very unstable or unpredictable TCP
performance
 Vastly increased interactions between flows

The business problem

 Unpredictable performance is a killer
 Unacceptable to users
 Can't write SLAs to assure performance

 A tiny minority of users consume the majority of
the capacity
 Trying to out-build the load can be very expensive
 And may not help anyhow

ISPs need to do something

 But there are no good solutions
 ISP are doing desperate (&misguided) things

 Throttle high volume users or apps to provide cost
effective and predictable performance for small
users

TCP is still lame

 Cwnd (primary control variable) is overloaded
 Many algorithms tweak cwnd

 e.g. burst suppression

 Long term consequences of short term events
 May take 1000s of RTT to recover from

suppressing one burst

 Extremely subtle symptoms
 Not generally recognized by the community

Desired fix

 Replace cwnd by (cwnd+trim) “everywhere”
 Cwnd is reserved for primary congestion control
 Trim is used for all other algorithms

 Signed
 Converges to zero over about one RTT

 Would expect more predictable and better
modeled behavior

A slightly better fix

 trim can be computed implicitly
 It is the error between cwnd and flight_size

 On each ACK:

 trim = flight_size – cwnd
 Existing algorithms update cwnd and/or trim

Even better

 The entire algorithm can be done implicitly

On each ACK compute:
 flight_size = (Estimate of data in the network)

 delivered = (The quantity of data accepted by the receiver)

 (= the change in snd.una, adjusted for SACK blocks)

 willsend = delivered

 If flight_size < cwnd: willsend = willsend + 1

 If flight_size > cwnd: willsend = willsend - ½

 heuristic_adjust(willsend) // Bursts suppression, paceing, etc

 send(willsend, socket_buffer)

Properties

 Strong packet conserving self-clock
 Three orthogonal subsystems

 Congestion control
 Average window size (&data rate)

 Transmission control
 Packet scheduling and burst suppression

 Retransmissions
 Reliable data delivery

Congestion control revisited

 Can use standard AIMD congestion control:

 On loss: cwnd = cwnd/2

 On ACK: cwnd = cwnd + (1/cwnd)

 Expect cleaner behavior than current stacks

 Can trivially use other algorithms
 No collisions with algorithms overloading cwnd
 Unconstrained choices for both increase and

decrease functions
 Huge research opportunities

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

