LEDBAT architecture framework consisting of pluggable components

draft-mayutan-ledbat-congestionarchitecture-00.txt

Mayutan Arumaithurai, Xiaoming Fu, K.K Ramakrishnan

March 23, 2010
Figure: Architecture consisting of pluggable components
Figure: Architecture consisting of pluggable components
Figure: Architecture consisting of pluggable components

=> Each module operates in a different timescale
Congestion Detection Module

- **Delay Based**
 - + Does not require network support
 - – Sensitive to variation in routes, bottleneck buffer size, bursty traffic etc.

- **Loss based**
 - + Reliable indicator of congestion
 - – Results in substantial interference to TCP

- **ECN marking based**
 - + Good and early indicator of the onset of congestion
 - – Requires network support

- **Delay + Loss/marking based**
Congestion Detection Module

- Delay Based
 - + Does not require network support
 - − Sensitive to variation in routes, bottleneck buffer size, bursty traffic etc.
- Loss based
 - + Reliable indicator of congestion
 - − Results in substantial interference to TCP
- ECN marking based
 - + Good and early indicator of the onset of congestion
 - − Requires network support
- Delay + Loss/marking based

Congestion indicator:

- Binary states: congested or non-congested
- Multiple levels: 0, 0.1, .., 0.5, .., 1
Flow Control Module

- Standard TCP (AIMD)
 - + Robust: Good indication of available capacity
 - – Substantial queuing, thereby delay
 - – Conservative in using available bandwidth

- Variants (Aggressive Increase)
 - + Good for high BDP networks
 - Without bandwidth estimation
 - – Cause interference: No prior knowledge of available bandwidth
 - With Bandwidth Estimation
 - + Separates congestion control from bandwidth estimation
 - – Slower
 - – Involves additional overhead

=> Always necessary to have an estimate of available bandwidth
Flow Control Module

- Standard TCP (AIMD)
 - + Robust: Good indication of available capacity
 - − Substantial queuing, thereby delay
 - − Conservative in using available bandwidth

- Variants (Aggressive Increase)
 - + Good for high BDP networks
 - Without bandwidth estimation
 - − Cause interference: No prior knowledge of available bandwidth
 - With Bandwidth Estimation
 - + Separates congestion control from bandwidth estimation
 - − Slower
 - − Involves additional overhead

⇒ Always necessary to have an estimate of available bandwidth
Bandwidth Estimation Module

- Standard TCP (increase until loss)
- Delay based (e.g. Vegas, Compound TCP)
- Probing based
- Router assisted (e.g. Quick start)
- Support of some oracle server
An example

Bandwidth-Estimation Module
- Standard TCP (Exploring by placing load and obtaining indication)
- Delay based
- Probing Based
- Router assisted
- Oracle server assisted

Flow-control Module
- Window/Rate when not congested: $w = w + 1$, $w = w + a(w)/w$, $w = w + a(BW_{est})$
- Window/Rate when congested: $w = 0.5^*w$, $w = 1$, $w = w(1 - b(w))$

Congestion-Detection Module
- Delay measurement
- Explicit Congestion Notification
- Loss based
- Delay + ECN /Loss

Figure: An example
Conclusion

- We could use it as a guideline while standardizing a CC mechanism to keep it flexible.
- Each module and component can be independently standardized
 - Decoupling each module
- Often implicitly followed in current specifications