What do you mean, “Congestion”?

- some history
 - “Congestion Collapse”
 - “Congestion Avoidance”
 - “Congestion Control”
 - “Explicit Congestion Notification”
 - “Datagram Congestion Control Protocol”
- this presentation is about what “congestion” means
 - not about what’s good or bad about a protocol
- some definitions
Congestion Collapse
(ref: RFC896, Nagle 1984)

• in 1986, NFSnet throughput dropped to 40 bps
 • routers discarded packets
 • expecting senders to retransmit
 • data-send rate doubled
 • lather, rinse, repeat
Van Jacobson in ACM, 1988

• “The flow on a TCP connection should obey a ‘conservation of packets’ principle.”
• “Thus congestion control involves finding places that violate conservation and fixing them.”
• “A new packet isn’t put into the network until an old packet leaves.”
Congestion-Avoidance
(RFC2001, Stevens 1997)

• four intertwined algorithms:
 • slow start (match injection rate to ACK rate)
 • congestion avoidance (AIMD, growth limited to <= 1 segment per RTT)
 • fast retransmit (>= 3 duplicate ACKs -> retransmit lost segment)
 • fast recovery
Congestion Control
(RFC 2581, Allman et al, 1999)

• updates Stevens 1997
• details of variables
• see also Congestion Control Principles
 (RFC 2914, Floyd 2000)
• see also Random Early Detection
 (RFC 2309, Braden et al 1998)
 • defines min & max thresholds for random drops
 • estimates “average queue size”
Explicit Congestion Notification

(RFC 2481, Floyd et al 1999)

- routers set CE bit instead of dropping
 - (would drop if not ECN-capable)
- typically RED rules
- when queue size remains high, drop instead of mark
- receiver response should be essentially the same as a single dropped packet
- react at most once per RTT
- obsoleted by RFC 3168
Addition of ECN to IP
(RFC 3168, Floyd et al, 2001)

• now Standards Track
• various TCP rules for packet drops
• rules for routers setting CE bit
• considers IP tunnels, e.g. IPsec (compatibility issues)
• active queue management, to smooth estimates
 • router can separate policies for queueing, dropping, indicating congestion
RFC 3168, continued

- workarounds for problem middleboxes
- CE set should indicate persistent congestion,
 - not a particular queue size
- receiver of CE should inform sender of its receipt
- sender should inform receiver that CWND has been reduced
- effects of on-path modifications to ECN bits
- see http://www.icir.org/floyd/ecn.html
Datagram Congestion Control Protocol
(RFC 4340, Handley et al 2006)

- aims for bidirectional unicast unreliable datagrams
- negotiation of congestion control mechanism
- uses ECN; ACKs arbitrarily reliable
- notification to sender which packets reached receiver
- initially two congestion-control mechanisms
 - TCP-like (RFC 4341) AIMD, ACKs similar to SACK
 - TCP-friendly (RFC 5348) for smoother responses
- intent to serve streaming-media needs
Definitions

 • “Congestion Definition: A condition in which one or more egress interfaces are offered more packets than are forwarded at any given instant.”
 • “Congestion is a condition in which a queue is filling due to packet arrival rate exceeding packet service rate.”
Four definitions from:

• Queuing theory definition:
• Networking text book definition:
• Network Operator’s definition:
• Economic definition:
Queuing theory definition:

“In queuing theory, traffic congestion is said to occur if the arrival rate into a system exceeds the service rate of the system at a point in time.”
Networking text book definition:

“Congestion of a network router is said to occur if packets are dropped. The buildup of packets in a queue is instead described as ‘contention’.”
Network Operator’s definition:

“Ask a network operator how “congested” part of their network is and they will respond with the average utilization of a link over some period of time.”
Economic definition:

“When an increase in the use of a facility or service which is used by a number of people would impose a cost (not necessarily a monetary cost) on the existing users, that facility is said to be ‘congested’.”