Motivations

• Add-paths introduces the ability for BGP speakers to advertise multiple paths for the same prefix/NLRI
 – Faster failover, better loadsharing, reduced routing churn…

• draft-ietf-idr-add-paths-03 describes the protocol mechanics but lacks detail about use cases

• New draft provides best practice recommendations for add-path implementers and network planners
 – Ease multi-vendor interoperability
 – Ensure nodal and network impacts are understood and manageable
Typical Add-Paths Deployment Scenario

- **AS 100**
 - RR
 - PE1
 - PE2
 - PE3
 - PE4

- **AS 200**
 - ASBR

Routing prefixes used:
- 10.0.0.0/24[A]
- 10.0.0.0/24[B]

Add-paths negotiated:
- PE1 to ASBR
- PE2 to ASBR
- PE3 to ASBR
- PE4 to ASBR

Add-paths not negotiated:
- PE1 to RR
- PE2 to RR
- PE3 to RR
- PE4 to RR

Add-paths negotiated

Add-paths not negotiated
Node/Network Impacts of Add-Paths

• Node
 – More avg. paths per prefix = more memory
 – RIB-OUT complexity: need to keep track of all peers to which path X:prefix Y has been advertised

• Network
 – Less routing churn: adv -> withdraw -> adv etc.
Key Question #1

- How to limit the number of paths per prefix to manage resource/memory impact?
 - Globally, per peer, per prefix
 - Send limit vs. receive limit

- Routing consistency is important
 - Need flexibility to advertise different number of paths to different peers without increasing the risk of routing loops
Key Question #2

• Which paths to advertise?
 – N best, full BGP decision process at each iteration
 – All best (subject to multipath constraints) + all second-best (subject to multipath constraints)
 – All best (subject to multipath constraints) + single second-best
 – etc.

• Need to consider the application
 – Fast failover, loadsharing, route oscillation mitigation
Questions?