

NIST Conceptual Model Overview and Evolution

Copiously cribbed from presentation by

Erich W. Gunther

Chairman and CTO

EnerNex Corporation, SGIP Administrator

SGIP

Why Use a Model and Tools?

- Systems are Becoming More Complex
- Scale and Scope of Next Generation Equipment
 - Thousands to Millions of Pieces of Field Equipment
 - Diverse Physical Media
 - Equipment Supplied by Multiple Providers
 - More Sophisticated Control and Management
- Need to Manage and Document Systems:
 - Initial Requirements and Designs
 - Life Cycle Management
- Open Standards Drives Need for Well Managed Equipment Interfaces and Integration

SGi Conceptual Model: Core Principles

- The NIST Smart Grid Conceptual Model
 - A framework for discussing the characteristics, uses, behavior, interfaces, requirements and standards of the Smart Grid
 - System of Systems multiple architectures
- General Concepts
 - Loose Coupling bilateral and multilateral transactions can occur without elaborate pre-arrangement
 - Layered Systems a collection of conceptually similar functions that provides services to the layer above and receives services from the layer below.
 - Shallow Integration avoids deep knowledge of the managed or configured components
- Interface Related
 - Symmetry each action can run both ways
 - Transparency transparent and auditable chain of transactions
 - Composition the building of complex interfaces from simpler interfaces
 - Cyber Security managed over the life-cycle of the systems deployed; fundamentally about managing risk; commensurate with the vulnerabilities and exposures from any given application; considered at the time the application requirements are being developed since the domain experts are in the best position to understand what is at stake.

SGIP Conceptual Model – Views as a Tool

SGiP Levels of the Conceptual Model

Domain Diagram

SGIP Use Cases: Paths Through the Model

SG!P Customer

Conceptual Reference Model

SGIP Demand Response – Example Only!

Source: EnerNex

SGIP A brief overview of the Smart Grid

Figure 4: Domain Decomposition

Surrent State of the Industry – according to Zigbee/Homeplug

Joint Utility

Leadership

Current State

Minimal collaboration between industry resulting in proprietary processes to each utility

- Fragmented standards
- No common end-to-end system definition
- No comprehensive certification process

Utility Requirements

There is an opportunity to align around a common comprehensive solution

- Timing is good
- Standards bodies are open to utility engagement
- Pick the best minimum solution

SGFactoid for the Internet Community

- Internet Protocol Suite seen as
 - "Complex"
 - Many optional protocols
 - Not engineered to AMI needs
 - "Threatening"
 - Business issues "let's not Osborne the business"
 - Technical issues not easily used in existing architecture and yet pressed by us and some utilities
- To make progress, we need to show flexibility
 - Make a building network a collection of 6lowpan and 6lowpan-like networks plus Ethernet/WiFi/WiMax sensors
 - MAC/PHY independence
 - Let vendor EMS manage our systems
 - The entire market is about management
 - Provide solutions that solve problems they are concerned about

Important observations on communications architecture

- All conversation are peer to peer
 - Actor reads sensor (request/response)
 - Sensor announces asynchronous events
 - Publish/Subscribe announcments
 - Command given to controller
- Sometimes these are "configuration"
 - Such as downloading certificates, rate tables, microcode, etc
- Often these are simply protocol exchanges
 - Command to reduce load temporarily
 - Current state

Important requirements placed on communications architecture

- Current base specification:
 - ANSI C12.19/22 OSI ACSE/ROSE on underlying architecture
 - Often "1, 2, 7", which is to say application on link layer
 - IPv4 used in some places
- Basic stack use I'm recommending:
 - IPv4/IPv6, emphasis on IPv6
 - Transport such as UDP, TCP, NORM, etc.
 - Note that CoRe is recommending a UDP-based Restful HTTP/UDP
 - Zigbee is demonstrating utility of TCP for the purpose
 - TLS or IPsec
 - Simple encoding such as XML
- Security requirements include
 - Identification/Authentication of communicating peers
 - Authorization regarding instructions given
 - Signatures on some data
 - Encryption of some exchanges

Possible directions

- Global perspective
 - Many places in the world deploying technology
- US perspective:
 - There is \$billions on the table to be spent in the US over the next four years
- Current status
 - Vendors are excited, want to sell what they have
 - Generally proprietary, often Application-on-MAC/PHY
 - Utilities are worried, want to buy things they understand
 - ARIN to USG: "there aren't IPv4 addresses to use..."

Use Case Management

Hundreds of relevant Use Cases to review

All using different nomenclature for same things

Turris Bahel http://towerofbahel 391.org/athanasiuskircher.htm

Transmission

Service Provider

SGiP The "GWAC Stack" Underneath

Organizational: Policy, Business Objectives, Business Procedures

Informational: Business Context, Semantic Understanding

Technical: Syntactic Interoperability, Network Interoperability, Basic Connectivity

Cross-Cutting Issues: Security, Resource Identification, Time Synch, etc.

Source: EnerNex

GWAC Stack – Levels of Interoperability

SGIP First 16 NIST Framework Standards

		\$		•	4		45	
1	AMI-SEC System Security Requirements	\checkmark	\checkmark	✓			✓	\checkmark
2	ANSI C12.19 End Device (Meter) Tables		✓	✓				\checkmark
3	BACnet Building Automation & Control Net			✓	✓			\checkmark
4	DNP3 – Distributed Network Protocol		✓		✓	✓	✓	
5	IEC 60870-6 – Inter-Control Center		✓					
6	IEC 61850 – Comms Nets in Substations		\checkmark		✓	✓	\checkmark	
7	IEC 61968/61970 - Common Info Model		✓	\checkmark				
8	IEC 62351 – Data Comms Security		✓		✓	✓	✓	
9	IEEE C37.118 - Synchrophasors		✓			\checkmark		
10	IEEE 1547 – Distributed Resources		✓		✓	✓	✓	
11	IEEE 1686 – IED Cyber Security				✓	✓	✓	
12	NERC Critical Infrastructure Protection	✓	✓	✓	✓	\checkmark	\checkmark	\checkmark
13	NIST SP 800-53/82 Fed Info Sys Security	✓	✓	✓	✓	\checkmark	✓	\checkmark
14	Open Automated Demand Response	✓	✓	✓				\checkmark
15	Open Home Area Network Requirements							\checkmark
16	ZigBee/HomePlug Smart Energy Profile							\checkmark

SGIP Conceptual Model as Architectural View

SG: NIST Interoperability Knowledge Base

Model Usage

- Please use the model! Ask us for the PPT!
- Intended to be adopted widely as a consistent means of discussing and analyzing the smart grid and its applications
- Example The IEEE PES will use the model as a means to:
 - Organize the IEEE PES smart grid web site
 - Ensure topic coverage for new publication Transactions on Smart Grid
 - Organize smart grid symposia topics and sessions
 - Categorize inventory of existing standards and projects
 - Categorize a smart grid bibliography and reference set

Panel Discussion – "LA 15"

DOE / NIST / UCAlug / ASAP-SG Effort

AMI Systems Use Cases: Actors, Logical Interfaces, and Networks

AMI: Advanced Metering Infrastructure SCADA: Supervisory Control and Data Acquisition

WMS: Work Management System

DRMS: Demand Response Management System

MDMS: Meter Data Management System DMS: Distribution Management System

EMS: Energy Management System

LMS: Load Management System

GIS: Geographic Information System

CIS: Customer Information System OMS: Outage Management System

HAN/BAN Use Cases: Actors, Logical Interfaces, and Networks

DRMS: Demand Response Management System HAN: Home Area Network

LMS: Load Management System CIS: Customer Information System **OMS: Outage Management System**

DER: Distributed Energy Resources MDMS: Meter Data Management System **EMS: Energy Management System**

Wide-Area Situational Awareness (WASA) Use Cases: Actors and Logical Interfaces

IED: Intelligent Electronic Device
DMS: Distribution Management System
EMS: Energy Management System

SCADA: Supervisory Control and Data Acquisition

AMI: Advanced Metering Infrastructure

Section and Logical Interfaces

RTO: Regional Transmission Operator

H2G Demand Response Use Cases: Actors and Logical Interfaces

HAN: Home Area Network

EMS: Energy Management System

DR: Demand Response

Removed Interfaces: 7 (meter doesn't get market signals), 8 (SP talks to devices through ESI), 12 (no grid op cnx to HAN device), 14 (not sure on this one), 17 (same as 18), 20-21 (meter doesn't talk to devices, but for AMI case ESI can be put in meter)

ions Association / Connector

B2G Demand Response Use Cases:

Actors and Logical Interfaces

HAN: Home Area Network

EMS: Energy Management System

DR: Demand Response

