
draft-ietf-karp-framework

J.W. Atwood, G. Lebovitz
KARP WG

2010/03/23
bill@cse.concordia.ca

Structure

  Copy-pasted from karp-roadmap
  1. Introduction
  2. Common Framework

  Justification
  Framework Elements

  3. Framework Components
  KMP, KeyStore, RP Mechanisms

  4. Framework APIs
  KMP-KS, KMP-RP, KS-RP

Introduction

  Most of this will vanish, replaced with a
reference to the threats-req document.

Common Framework

  List of the elements of the framework,
along with a figure.

Step 1

Basic Routing Proto

Traffic Keys

KeyStore

1.  Define protected elements

2.  Strong algos

3.  Algo agility

4.  Secure use of simple PSK’s

5.  Inter-conn. replay protection

6.  Intra-conn. replay protection

7.  Change parameters forces
change of traffic keys

8.  Use new key within a
connection without data loss

9.  Efficient re-keying

10.  Prevent in-scope DoS

11.  Support manual keying

12.  All for future use of KMP

Configured PSK

Step 2

Basic Routing Protos

Traffic Keys

KeyStore

1.  Layer in KMP

2.  Define Identifier types/formats

3.  Define ID proof mechanisms

4.  Re-use KeyStore

5.  Re-use Routing Proto’s Manual
key structure

6.  Common Elements:

1.  KeyStore

2.  KeyStore-to-Routing
Proto API

3.  KMP-to-KeyStore API

4.  KMP-to-Routing Proto
API

5.  KMP Function

KMP Function ID’s Proof of
ID’s

KMP-to-Routing
Proto API

KeyStore-to-
Routing
Proto API

KMP-to-
KeyStore
API

Common Auth
Mechanisms/I.F.’s

Manual
Keyset

Framework Components

  Short descriptions of each component
  Questions going forward:

  Suck in draft-housley-saag-crypto-key-table
& draft-polk-saag-rtg-auth-keytable?

  Validation of the usefulness of the
framework: We need some experience

  Start some protocol-specific efforts and
generate message sequences

Framework APIs

  Fairly well-defined as functional
descriptions
  What attributes are passed
  What the exchange has to accomplish
  NOT specify actual API code

  An open-source reference
implementation would be wonderful.

Going Forward

  Defining the APIs will follow from
attempting to produce Message
Sequences from examination of actual
protocols
  Protocol-specific design teams

  Volunteers for Reference Example
  Prototype and write OR
  Abstractly conceive and write

Ekr Overall Comment
  “There seems to be a basic a assumption

throughout these documents that the right
design is a decomposed system with separate
traffic protection and key management
pieces. IMO this has not served us particularly
well in IPsec, so I'm not sure why we would
want to repeat it. In particular, there are
settings where an integrated comsec protocol
such as (D)TLS or SSH would be attractive
candidates”

Discussion
  Do we want to cleanly separate the traffic

protection key and management pieces?
  Is there a good technical reason for why an

integrated comsec protocol is better in this
application?

  Is there one or more cases where an integrated
comsec protocol will not work?

  How would an integrated comsec protocol give
us the modularity that the RPD teams are asking
of this effort?

Ekr Framework Comments

  Why separate the KMP from the data
security piece?

  Why define another abstract Key Store
concept?

  Claim about security of
  Self-signed certificates
  CA signed certificates

..2

  Agreement of parties about
configuration information

  I encourage those whose background is
more security than mine to respond to
these concerns on the list, so that
consensus can be achieved.

Questions?

