Agenda

- Why does NETCONF need a standard access control model (ACM)?
- What are the functional requirements for a standard ACM for NETCONF?
- Extra Slides (if time permits):
 - What is 'nacm:secure', and why is content tagging important for configuration?
 - What is in nacm.yang?
Conceptual Model

client request

RPC operation allowed?

If any database or state data is accessed by the operation

data node access allowed?

prune restricted <rpc-reply> nodes?

client reply

client session

prune restricted <notification> event or data?
Need for a standard ACM (1)

- Operators will benefit from a standard way to control access to NETCONF content, based on the user associated with the NETCONF session.
Need for a standard ACM (2)

- Without a standard ACM, every NETCONF user is a 'root' user:
 - NETCONF has only 1 login sequence.
 - SNMP has the concept of 2 user classes built in (public and private community string).
 - Some CLIs have the concept of an extra login step to get to 'configuration mode'.
Need for a standard ACM (3)

- NETCONF allows unlimited operations and actions to be added to the protocol:
 - The likelihood that every user should have access to everything is even lower than SNMP.
 - Specialized configuration for access control will increase the complexity of new module deployment.
Need for a standard ACM (4)

- The threat of XML data injection attacks in NETCONF needs to be addressed:
 - There is a known SSH end-of-message attack that can be used to truncate an <rpc> request and insert one or more new <rpc> requests into the data stream.
 - Access control can be used to constrain the scope of this attack by limiting the commands and data that an attacker can reach.
Consensus Check

- Should the IETF develop a standard solution for session authorization to configurable subsets of all NETCONF operations and content?
 - a) yes
 - b) no
NACM Requirements (1)

- Protocol Control Points
 1) `<rpc>` operation requested.
 2) Server contents that can be returned for a `<get>` request. This includes all configuration database contents, plus read-only non-configuration data.
 3) `<notification>` event type to be sent.
Non-control points:

- The `<rpc-reply>` contents for an arbitrary RPC that does not access the conceptual `<get>` content:
 - If the client can invoke the operation, it can receive any reply for that operation.
- The `<notification>` contents for an arbitrary notification event:
 - If the client is authorized to receive the event type, it can receive any possible content for that event type.
NACM Requirements (3)

- Simplicity:
 - Localized cost:
 - Simple tasks must be easy to configure, or require no configuration at all.
 - Simple mechanisms should not require any special knowledge, like XPath.
 - Complex tasks should be possible using additional, optional-to-use, mechanisms.
 - Familiar set of permissions:
 - read, write, exec
NACM Requirements (4)

- Database Access:
 - The same access control rules apply to all standard databases:
 - Must be applied to <candidate>, <running>, and <startup>.
 - External <url> databases are not subject to access control enforcement by the server.
 - Managing credentials for external databases (using other protocols) is outside the scope of NACM.
NACM Requirements (5)

- Users and Groups:
 - The server must obtain a user name string from the transport layer somehow.
 - A user may be a member of zero or more groups.
 - A group contains zero or more users.
 - An access control rule applies to one or more groups.
NACM Requirements (6)

- Superuser Access:
 - The server should support the concept of a superuser (root) account that can bypass all access control enforcement:
 - Needed for secure initial bootstrap of NACM configuration.
 - Needed if the NACM configuration (or the implementation) is broken and all users are locked out.
NACM Requirements (7)

- On/off switch:
 - It should be possible to enable and disable access control enforcement without deleting or altering any access control rules that are configured.
NACM Requirements (8)

- Separate configurable default modes for each permission:
 - read-default
 - write-default
 - exec-default

- These defaults are applied when there is no appropriate access control rule found for the requested user/operation/data.
NACM Requirements (9)

- Identifying security holes:
 - Data modeler knows which conceptual data is a security risk, according to IETF security consideration guidelines.
 - Operators need to learn of this data and configure the proprietary ACM to block access to it.
 - A machine-readable statement could be used to help YANG tools identity sensitive data that should not be accessed by default.
NACM Requirements (10)

- Data shadowing and leakage:
 - The server should treat 'pointer' data nodes as if the user requested access to the 'pointed-at' data node.
 - Only identifiable for YANG leafref types.
 - Key leaf values returned in instance-identifiers may leak sensitive information. The data modeler should be aware of this when using i-i data nodes.
NACM Requirements (11)

• Monitoring and Errors:
 – Counters to indicate when a write or exec request was denied should be maintained.
 – An 'access-denied' error is generated for denied write and exec requests.
 – A denied read request causes the unauthorized data to be silently omitted, instead of an 'access-denied' error.
Consensus Check

• Do you generally agree with these requirements for NETCONF access control?
 – a) yes
 – b) no
Extra Slides

- The nacm:secure and nacm:very-secure YANG language extensions
- Brief overview of nacm.yang contents
- Free client and server implementation of nacm.yang available at http://yuma.iwl.com/
 - called yuma-nacm, not nacm
YANG Extensions for NACM

- nacm:secure
 - Instead of using the default rule, deny requests for write or exec access.
 - Use the default rule (read-default) for read operations.

- nacm:very-secure
 - Instead of using the default rule, deny all access.

- These extensions only apply if no ACL is found for the specific request.
Groups are identified with YANG identities:
 - in case an operator wants to attach semantics to a specific group name.
 - no standard semantics for 3 example groups included (admin, monitor, guest).

Global boolean controls:
 - enable-nacm
 - read-default
 - write-default
 - exec-default
Simple access control rules are provided:

- `<module-rule>`
 - access to an entire YANG module.

- `<rpc-rule>`
 - access to a specific RPC operation.

- `<data-rule>`
 - access to a subset of all conceptual data nodes, available for a `<get>` operation.

- `<notification-rule>`
 - access to a specific notification event type.
nacm.yang (3)

- NACM access control rule common fields:
 - <rule-name>
 - arbitrary name for user-ordered list insertion.
 - <allowed-rights>
 - bits containing zero or more permissions granted by this rule.
 - <allowed-group>
 - leaf-list of all the group names that are affected by this rule.
 - <comment>
 - user comment to store along with this rule.
nacm.yang (4)

- Open issues:
 - More complex data rules and wildcard mechanisms?
 - What to do about <copy-config> leaving out unauthorized data?
 - Should backup/restore only be done by a user with full access, or should the server violate the NETCONF operation and pretend the unauthorized data was not removed?
 - Is an <access-denied> notification event needed?