How Big (or How Small)
Should (or Might) NFSv4
Minor Versions Be?

Exploring the Constraints

David Noveck
IETF 77
March 23, 2010



Introduction

* Purposes

— Exploring the issues, technical and otherwise, with the
size of minor versions

— In particular, thinking about very small minor versions

— Exploring the document structure for
“normal” (whether big or small) minor versions.

— Stimulating group discussion
* Non-purposes:
— Coming to any immediate conclusion on these issues



Normal (?) Minor Versions

* What things make a minor version non-normal?
— Initiating the protocol as whole, or,

— Violating any of the minor version rules
« Containing mandatory new features
« Making things mandatory-to-not-implement immediately

* S0, using this definition
— v4.0 and v4.1 are not normal minor versions
— v4.2 is the first normal minor version
« We should think carefully about the issues

« We don’t have precedents to go by

« We will be establishing precedents (due to inertia rather than
Stare decisis)

— Expect most new minor versions to be “normal”



Constraints Taken for Granted

No more non-normal minor versions
— At least for quite a while

No more 600+ page documents

No more versions that take about 700
pages to describe (RFCs 5661 & 5662)
No more versions as big as v4.1

— Even if they have smaller documents due to a
different document strategy



Defining the Maximum

Can’t use pages, affected by doc. strategy

Let’s look at big changes and guess at size

In v4.1:

— Sessions (including trunking) [2.0]

— PNFS (including file layout type) [2.0]

— Directory delegation [1.0]

— Multi-server namespace (+new attributes) [1.0]
— New compliance attributes [0.2]

— New stateid stuff [0.3]

Group should have some sense of rough
maximum [2.5]?7 [3.0]? [3.5]?



What About a Minimum?

« How small can/should a minor version be?

« Smallest would be to correct omissions
— “How could we have forgotten ...”
— But it isn’t an erratum

« Without arguing about whether this is an
example, consider commit level

— Why can't WRITE tell you that you don't need
a LAYOUTCOMMIT?

— Duh. Because we forgot to add it to the enum



When Would a v4.x be too Small?

* |ssues of overhead
— Document writing (depends on doc. strategy)
— Group last call
— |IETF last call
— RFC editor
— Non-trivial. WG needs to compare to benefits

« What isn't a big issue for small versions

— Overhead of writing a client (as for v4.1)

— A small v4.2 is more like a v4.1.1
« A v4.1 client that accepts 2 in the version field conforms
« Then the issue is implementing a small feature



Some Models for Minor Versions

* Three models discussed below
— Marquee Feature Model

— Timed Model
— Maintenance Model
* Not mutually exclusive

— Working group can adopt one or more than
one



Marquee Feature Model

* Requires one or more marquee features
— Big enough to generate interest

* Version ready when marquee feature(s)
are ready

— Plus whatever else is ready at the time

« Should be able to credibly defer things not quite
ready

— Most similar to v4.1
« Although we weren'’t really prepared to drop things



Timed Version Model

* Decide on a minor version cadence
— Attempt to stick to it
— Can modify it, if it is too fast or slow
— But generally not for individual features
* Allows people to plan

— If a feature take longer than expected, it is
deferred

— Other features are not held up
» Client implementations can also plan



Maintenance Version Model

* To correct generally recognized omissions or
mistakes
— Which aren’t errata. Not editing mistakes.

— Will be dispute about how important the issue is, but
not about the fact that wrong choice was made.

* If there is rough consensus,

— Group creates a small minor version, for that/those
alone

— Up to group but other sorts of things add risk, even if
they seem generally OK/ready



Document Strategy

* Avoid big documents

— One approach is to just document delta between v4.x
and v4.x+1 in single v4.x+1 RFC

 Problems:

— Gets unwieldy when x > 3
« Each document may modify others

« Don’t know where to go for the truth about v4.x
* No XDR file for v4.x

— X > 3 may happen quickly if maintenance versions
» Can reissue big RFC's every so often, or ...



Alternate Document Strategy

Here is an alternate document strategy
Definitely a first pass
Appreciate working group comments

Divides documentation up:
— Feature documents (become RFC'’s)

— Version documents (also become RFC’s)
* Done very late in process



Feature RFC'’s

 Documents features in feature RFC’s, not the version
RFC

— Makes it easier to split up work appropriately

— Makes it easier to put off decision on what is ready until that
decision is necessary

« Consists of:
— New sections explaining new feature
— Descriptive sections for new ops (same format as RFC 5661)
— Changed versions of sections from RFC5661 and earlier feature

RFCs.
— To avoid delta scanning nightmare, require full section changes:
* If you change section a.b feature RFC has a new version, not
“section a.b is the same except except for ... and ...”
 |In particular, if you change an operation, you have a revised version
of that operation in feature RFC



Version RFC’s

e Contains:

— Full XDR for minor version
+ Implicitly contain XDR for all versions
» Uses “#if MINOR_VERSION > n”
« Can programmatically check for compatibility

— Updated OP-vs.-error tables to reflect
* New ops, ops becoming mandatory, deprecated, mandatory-
to-not-implement
— Version document index

* For each a.b-level section, including op and cb definitions
— Specifies where correct (i.e. latest) version is to be found
» RFC 5661
» Feature RFC for this version
» Feature RFC for previous version



Can Write Validation Tools

Check that the XDR source processed with
-DMINOR_VDRSION=n matches XDR for minor
version n.

Report on the differences in error table with
regard to existing ops

That all major sections of feature RFCs are
referenced as the most current version of
something in the index.

Report on diffs when new section replaces old

Should reduce the gap between decision on
contents and the version document last-call



Should be Able to

* Have scripts which scan index and with
other RFCs, produce:

— An explanation RFC-style document, like first
half of RFC5661

— An ob/cb RFC-style document with ops listed
either in numeric or alphabetical order

« Should be able to create a web site to
produce minor version documents or html
drafts when you type in the version
number.



If we have time

e Questions
e Comments

* In any case, discussion needed on
working group list



