Application Layer Multicast
Extensions to RELOAD
draft-kolberg-sam-baseline-protocol-00

Mario Kolberg, University of Stirling, UK (Editor)
John Buford, Avaya Labs Research, USA
Thomas C. Schmidt, HAW Hamburg
Matthias Waehlisch, link-lab & FU Berlin
Overview

• New baseline document
 – Extension to RELOAD, uses P2PSIP RELOAD as the overlay layer
 – Uses AMT (Automatic IP Multicasting Tunneling) for tunneling between ALM and Native Multicast regions

• Based on previous framework and protocol IDs
 – draft-irtf-sam-hybrid-overlay-framework-02
 – draft-irtf-sam-overlay-protocol-00.txt
 – draft-waehlisch-sam-common-api-01
 – draft-irtf-sam-problem-statement-02.txt

• Request that the RG adopt this as an RG deliverable for future RFC submission
RELOAD Extensions

- Experimental
- New overlay protocol messages to support ALM tree lifecycle
- New overlay protocol messages to support formation of ALM-NM trees
- New RELOAD usages to support storing tree root, tree attribute, statistics, and diagnostics in the DHT
- API for group management
Contents

draft-kolberg-sam-baseline-protocol-00

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>4</td>
</tr>
<tr>
<td>1.1. Requirements Language</td>
<td>4</td>
</tr>
<tr>
<td>2. Definitions</td>
<td>4</td>
</tr>
<tr>
<td>2.1. Overlay Network</td>
<td>5</td>
</tr>
<tr>
<td>2.2. Overlay Multicast</td>
<td>5</td>
</tr>
<tr>
<td>2.3. Peer</td>
<td>5</td>
</tr>
<tr>
<td>2.4. Multi-Destination Routing</td>
<td>5</td>
</tr>
<tr>
<td>3. Assumptions</td>
<td>6</td>
</tr>
<tr>
<td>3.1. Overlay</td>
<td>6</td>
</tr>
<tr>
<td>3.2. Overlay Multicast</td>
<td>6</td>
</tr>
<tr>
<td>3.3. P2PSIP</td>
<td>7</td>
</tr>
<tr>
<td>3.4. NAT</td>
<td>7</td>
</tr>
<tr>
<td>3.5. Regions</td>
<td>7</td>
</tr>
<tr>
<td>3.6. AMT</td>
<td>7</td>
</tr>
</tbody>
</table>

Sec. 2 and 3 were adopted from draft-irtf-sam-hybrid-overlay-framework-02
Sec 4. was adopted from draft-irtf-sam-hybrid-overlay-framework-02
Sec 5. was adopted from draft-waehlisch-sam-common-api-01
Sec 6. was adopted from draft-irtf-sam-hybrid-overlay-protocol-00 and modified to be consistent with RELOAD baseline v07
Contents

draft-kolberg-sam-baseline-protocol-00

6.2.7. Join Via Native Link ... 18
6.2.8. Leave ... 19
6.2.9. Leave via AMT Gateway .. 20
6.2.10. Re-Form or Optimize Tree 21
6.2.11. Heartbeat .. 21
6.3. AMT Gateway Advertisement and Discovery 21
6.4. Peer Region and Multicast Properties Messages 22
7. RELOAD Usages .. 23
 7.1. ALM Usage for RELOAD ... 24
 7.2. Hybrid ALM Usage for RELOAD 24
8. Examples .. 24
9. IANA Considerations .. 24
10. Security Considerations .. 24
11. References ... 25
 11.1. Normative References ... 25
 11.2. Informative References 25
Appendix A. Additional Stuff .. 27
Authors' Addresses .. 27

Sec 7 is new
Sec 8 is a placeholder
Example ALM-NM Topology
from: draft-irtf-sam-hybrid-overlay-framework-02

- Select between OM subtree and NM subtree opportunistically
- Expect improved network efficiency, increase throughput and reduce latency
- Design based on AMT tunnelling mechanism
- Protocol uses structured P2P overlay to connect peers in different types of multicast regions
Sec. 4.1 Algorithm: ALM only

- **groupId=create();**
 - Allocation of unique groupId
 - Out of band advertisement/publishing in DHT

- **joinTree(groupId)**
 - Out of band discovery of groupId (lookup in DHT)
 - Send join message to peer with the nearest NodeID to the groupId (tree root)
 - Peers on the path to the root join tree as forwarding nodes

- **leaveTree(groupId)**
 - Sends leave message to each child node and the parent node
 - If parent is a forwarding node and this is its last child, forward to its parent
 - Child node receiving a leave message from parent sends join message to tree root

- **multicastMsg(groupId)**
 - SSM tree: creator of tree is source; it sends data message to tree root from where it will be forwarded down the tree
 - ASM: peer sending message will send it to its parent and children; each node receiving message will forward it to remaining tree edges it is connected to
Sec. 4.2 Algorithm: ALM with peer at AMT site

- Joining peer
 - use ALM algorithm
 - If tree includes peer in NM, joining peer can use AMT-GW to connect to NM
 - Joining peer can chose delivery path based on latency etc

- If peer is not a joining peer, but on the overlay path of a join request
 - If next hop is peer in NM with AMT-R, peer can select overlay routed multicast or AMT delivered multicast
 - If next peer is a peer outside of NM, then peer can use ALM only or use AMT delivery as an alternative
Sec. 4.4 ALM with NM peer using AMT-R

• There is no peer in the tree which has AMT-GW. NM peer uses ALM.
• There is one peer which can operate as P-AMT-GW. NM peer can use ALM or P-AMT-GW.
• There is one peer in the tree which is in AMT-GW region. The NM peer can use ALM or connect to the AMT-GW

• If we have an ALM tree with NM peer with P-AMT-R functionality, then the 3 rules above apply similarly
Sec 5. Group Management API

• API between Application and Group stack

• init(out Handle s)
 – This call creates a multicast socket that is bound to some virtual multicast interface and provides a corresponding handle to the application programmer, which will be used for subsequent communication.

• join(in Handle s, in URL g)
 – This operation initiates a group subscription for the name g, including the corresponding tree access.

• leave(in Handle s, in URI g)
 – This operation results in an unsubscription for the given name g, including the corresponding disconnect of the tree.

• send(in Handle s, in URI g, in Message m)
 – This call sends data m to the multicast group name g. It simultaneously initiates creation of the group state, if not already present.

• receive(in Handle s, out URI g, out Message m)
 – This call delivers data m to the application along with an indicator of the group membership.
Sec. 6 Protocol definition

- Messages between RELOAD nodes
- Supports different tree formation algorithms described earlier
- Control messages are propagated using overlay routing
- Message categories
 - ALM Usage:
 - Tree life-cycle (create, join, leave, re-form, heartbeat)
 - Hybrid ALM Usage:
 - Tree life-cycle
 - AMT gateway advertisement and discovery
 - Peer region and multicast properties
New RELOAD Usages

• Applications of RELOAD are restricted in terms of the data types they can store in the overlay → usage
• RELOAD is extendible in that new usages can be defined
• ALM applications need additional data types to the base RELOAD types → define new usage
• Define 2 new usages
 – ALM Usage
 – Hybrid ALM Usage
ALM Usage

• ALM applications use the RELOAD data storage functionality to store a groupID when a new ALM tree is created, and to retrieve groupIDs for existing ALM trees.
• ALM applications use the RELOAD data storage functionality to store a set of attributes for an ALM tree,
 – E.g. owner, tree size, tree height, tree formation algorithm, and join criteria.
• ALM applications and management tools use the RELOAD data storage functionality to store diagnostic information about the operation of tree,
 – average number of trees, delay from source to leaf nodes, bandwidth use, lost packet rate.
 – In addition, diagnostic information may include statistics specific to the tree root, or to any node in the tree.
Hybrid ALM Usage

- HALM applications use the RELOAD data storage functionality to store a set of attributes for a AMT Gateway that can connect to at least one node in the overlay.
- HALM applications use the RELOAD data storage functionality to store a set of attributes about a native multicast region associated with an AMT Gateway.
- HALM applications and management tools use the RELOAD data storage functionality to store diagnostic information about the operation of AMT and ALM interconnections.
V01 Changes Being Discussed

• Provide a more detailed, illustrative sample use case in section 4 that explains what actually can be achieved and how.

• Move section 7 up just behind section 4 and reflect the achievable operations directly in reload usages.
Experimental Plan

• We are looking for a RELOAD implementation that is consistent with the current RELOAD spec
 – draft-ietf-p2psip-base-07
RG Action Requested

- Request that the RG adopt this as an RG deliverable for future RFC submission