

# Application Layer Multicast Extensions to RELOAD draft-kolberg-sam-baseline-protocol-00

Mario Kolberg, University of Stirling, UK (Editor)
John Buford, Avaya Labs Research, USA
Thomas C. Schmidt, HAW Hamburg
Matthias Waehlisch, link-lab & FU Berlin



## Overview

- New baseline document
  - Extension to RELOAD, uses P2PSIP RELOAD as the overlay layer
  - Uses AMT (Automatic IP Multicasting Tunneling) for tunneling between ALM and Native Multicast regions
- Based on previous framework and protocol IDs
  - draft-irtf-sam-hybrid-overlay-framework-02
  - draft-irtf-sam-overlay-protocol-00.txt
  - draft-waehlisch-sam-common-api-01
  - draft-irtf-sam-problem-statement-02.txt
- Request that the RG adopt this as an RG deliverable for future RFC submission



## **RELOAD Extensions**

- Experimental
- New overlay protocol messages to support ALM tree lifecycle
- New overlay protocol messages to support formation of ALM-NM trees
- New RELOAD usages to support storing tree root, tree attribute, statistics, and diagnostics in the DHT
- API for group management





## Contents

#### draft-kolberg-sam-baseline-protocol-00

| 1 | . Int | roduction | n     | -    | -   |     | •  |    | - |   |   |   |   | - |   |   | - |   |   |   |   | - |   | - | • | 4 |
|---|-------|-----------|-------|------|-----|-----|----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   | 1.1.  | Require   | ments | 3 Le | ing | uac | re |    | - |   | • |   |   | - |   |   | - | • |   |   |   | - | • | - | • | 4 |
| 2 | . Def | initions  |       |      |     |     |    |    |   |   |   | - |   | - |   |   | - | - | - |   |   | - | - | - | • | 4 |
|   | 2.1.  | Overlay   | Netu  | ork  | Σ   |     | •  |    |   | - | - | - |   | - |   |   |   | - |   | - |   | - |   | - | • | 5 |
|   | 2.2.  | Overlay   | Mult  | ica  | ast |     | •  |    | - | • | • | • | • | - | • | • | • | • | - | • | • | - | • | - | • | 5 |
|   | 2.3.  | Peer .    |       |      |     |     |    |    |   |   |   |   |   |   |   |   |   | - |   |   |   |   |   |   |   | 5 |
|   | 2.4.  | Multi-De  | estir | nati | ion | Ro  | ut | in | g |   |   | - |   | - |   |   | - | - | - |   |   | - | - | - | • | 5 |
| 3 | . Ass | umptions  |       | •    |     |     |    |    | - |   |   | - |   |   |   |   |   | - |   | - |   |   | - |   |   | 6 |
|   | 3.1.  | Overlay   |       | -    | -   |     |    |    | - | - | • | - | - | - | - |   | - | - | - | - | - | - | - | - | • | 6 |
|   | 3.2.  | Overlay   | Mult  | ice  | ast | •   | •  |    |   | - | - | - |   | - |   |   |   | - |   | - |   | - |   | - | • | 6 |
|   | 3.3.  | P2PSIP    |       | •    |     |     |    |    |   |   |   | - | - | - |   | - | - | - | - | - | - | - |   | - |   | 7 |
|   | 3.4.  | NAT .     |       |      |     |     |    |    |   |   | • | • |   |   |   |   |   | - |   | • |   |   |   |   | • | 7 |
|   |       | Regions   |       |      |     |     |    |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   | 3.6.  | AMT .     |       |      | -   |     |    |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 7 |

Sec. 2 and 3 were adopted from draft-irtf-sam-hybrid-overlay-framework-02



## Contents

#### draft-kolberg-sam-baseline-protocol-00

| 4. | Hybr | id A  | LM Tr  | ee ' | Ope: | ra  | ti | on  | s    |       |     |     |    |     |     |     |     |   |   |   |   |   |   |   |   |   |   | 8  |
|----|------|-------|--------|------|------|-----|----|-----|------|-------|-----|-----|----|-----|-----|-----|-----|---|---|---|---|---|---|---|---|---|---|----|
| 4. | .1.  | ALM-  | Only   | Tre  | ≘ -  | A   | lg | or  | it   | hn    | n I | L   |    |     |     |     |     |   |   |   |   |   |   |   |   |   |   | 10 |
| 4. | .2.  | ALM   | tree   | wit: | h p  | ee: | r  | at  | 1    | M7    | C 8 | 3it | e  | (I  | MI  | Γ-( | GW) |   |   |   |   |   |   |   |   |   |   | 11 |
| 4. | .3.  | ALM   | tree   | wit: | h N  | M : | pe | er  | ι    | ısi   | ing | g A | MI | T-F | ₹ . |     |     |   |   |   |   |   |   |   |   |   |   | 11 |
| 4. | .4.  | ALM   | tree   | wit: | h N  | M : | pe | er  | Т    | σit   | h   | P-  | AN | IT- | -R  |     |     |   |   |   |   |   |   |   |   |   |   | 12 |
| 4. | .5.  | Mixe  | d Reg  | gion | Sc   | en  | ar | io  | s    |       |     |     |    |     |     |     |     |   |   |   |   |   |   |   |   |   |   | 12 |
| 5. | Grou | ip Ma | nager  | nent | AP   | I   |    |     |      |       |     |     |    |     |     |     |     |   |   |   |   |   |   |   |   |   |   | 13 |
| 5. | .1.  | Data  | . Туре | es . |      |     |    |     |      |       |     |     |    |     |     |     |     |   |   |   |   |   |   |   |   |   |   | 14 |
| 5. | .2.  | Send  | l and  | Rec  | eiv  | e   | Ca | 11  | s    |       |     |     |    |     |     |     |     |   |   |   |   |   |   |   |   |   |   | 14 |
| 6. | Prot | ocol  |        |      |      |     |    |     |      |       |     |     |    |     |     |     |     |   |   |   |   |   |   |   |   |   |   | 14 |
| 6. | .1.  | Intr  | oduct  | ion  |      |     |    |     |      |       |     |     |    |     |     |     |     |   |   |   |   |   |   |   |   |   |   | 14 |
| 6. | .2.  | Tree  | Life   | ecyl | ce : | Me  | SS | ag  | es   | 3     |     |     |    |     |     |     |     |   |   |   |   |   |   |   |   |   |   | 15 |
|    | 6.2. | 1.    | Creat  | e T  | ree  |     |    |     |      |       |     |     |    |     |     |     |     |   |   |   |   |   |   |   |   |   |   | 15 |
|    | 6.2. | 2.    | Join   |      |      |     |    |     |      |       |     |     |    |     |     |     |     |   |   |   |   |   |   |   |   |   |   | 16 |
|    | 6.2. | 3.    | Join   | Acc  | ept  |     |    |     |      |       |     |     |    |     |     |     |     |   |   |   |   |   |   |   |   |   |   | 16 |
|    | 6.2. | 4.    | Join   | Con  | fir  | m   |    |     |      |       |     |     |    |     |     |     |     |   |   |   |   |   |   |   |   |   |   | 17 |
|    | 6.2. | 5.    | Join   | Dec  | lin  | e   |    |     |      |       |     |     |    |     |     |     |     |   |   |   |   |   |   |   |   |   |   | 17 |
|    | 6.2. | б.    | Join   | Via  | A M  | Т   | Ga | t.e | TITE | 3 7.7 | -   | -   | -  | -   | -   | -   | -   | - | - | - | - | - | - | - | - | - | - | 18 |

- Sec 4. was adopted from draft-irtf-sam-hybrid-overlay-framework-02
- Sec 5. was adopted from draft-waehlisch-sam-common-api-01
- Sec 6. was adopted from draft-irtf-sam-hybrid-overlay-protocol-00 and modified to be consistent with RELOAD baseline v07





## Contents

### draft-kolberg-sam-baseline-protocol-00

| 6.2.7.       | Join Via Native Link                       |                    |              |   |   | - | 18 |
|--------------|--------------------------------------------|--------------------|--------------|---|---|---|----|
| 6.2.8.       | Leave                                      | •                  |              |   |   |   | 19 |
| 6.2.9.       | Leave via AMT Gateway                      |                    |              |   |   |   | 20 |
| 6.2.10.      | Re-Form or Optimize Tree                   | •                  |              |   | - |   | 21 |
| 6.2.11.      | Heartbeat                                  |                    |              |   |   |   | 21 |
| 6.3. AMT     | Gateway Advertisement and Discovery        |                    |              |   |   |   | 21 |
|              | r Region and Multicast Properties Messages |                    |              |   |   |   |    |
| 7. RELOAD 1  | Usages                                     |                    |              |   | - | - | 23 |
| 7.1. ALM     | Usage for RELOAD                           |                    |              |   |   | - | 24 |
| 7.2. Hyb:    | rid ALM Usage for RELOAD                   | - 1, - 1           |              |   |   | - | 24 |
| 8. Example:  | 3                                          | · '} <b>=</b> (' - |              |   |   |   | 24 |
| 9. IANA Cor  | nsiderations                               | -                  |              | - | - | - | 24 |
| 10. Security | y Considerations                           | •                  | •            |   | - | - | 24 |
| 11. Referen  | ces                                        |                    |              | - | - | - | 25 |
| 11.1. Nor    | mative References                          |                    | ; <b>.</b> . |   |   |   | 25 |
| 11.2. Info   | ormative References                        |                    |              |   |   | - | 25 |
| Appendix A.  | Additional Stuff                           |                    |              |   |   |   | 27 |
| Authors' Ado | dresses                                    |                    |              |   |   | _ | 27 |

Sec 7 is new Sec 8 is a placeholder



## **Example ALM-NM Toplogy**

from: draft-irtf-sam-hybrid-overlay-framework-02

- Select between OM subtree and NM subtree opportunistically
- Expect improved network efficiency, increase throughput and reduce latency
- Design based on AMT tunnelling mechanism
- Protocol uses structured P2P overlay to connect peers in different types of multicast regions





# Sec. 4.1 Algorithm: ALM only

- groupID=create();
  - Allocation of unique groupID
  - Out of band advertisement/publishing in DHT
- joinTree(groupID)
  - Out of band discovery of groupID (lookup in DHT)
  - Send join message to peer with the nearest NodeID to the groupID (tree root)
  - Peers on the path to the root join tree as forwarding nodes
- leaveTree(groupID)
  - Sends leave message to each child node and the parent node
  - If parent is a forwarding node and this is its last child, forward to its parent
  - Child node receiving a leave message from parent sends join message to tree root
- multicastMsg(groupID)
  - SSM tree: creator of tree is source; it sends data message to tree root from where it will be forwarded down the tree
  - ASM: peer sending message will send it to its parent and children; each node receiving message will forward it to remaining tree edges it is connected to



# Sec. 4.2 Algorithm: ALM with peer at AMT site

- Joining peer
  - use ALM algorithm
  - If tree includes peer in NM, joining peer can use AMT-GW to connect to NM
  - Joining peer can chose delivery path based on latency etc
- If peer is not a joining peer, but on the overlay path of a join request
  - If next hop is peer in NM with AMT-R, peer can select overlay routed multicast or AMT delivered multicast
  - If next peer is a peer outside of NM, then peer can use ALM only or use AMT delivery as an alternative



## Sec. 4.4 ALM with NM peer using AMT-R

- There is no peer in the tree which has AMT-GW. NM peer uses ALM.
- There is one peer which can operate as P-AMT-GW. NM peer can use ALM or P-AMT-GW.
- There is one peer in the tree which is in AMT-GW region.
   The NM peer can use ALM or connect to the AMT-GW
- If we have an ALM tree with NM peer with P-AMT-R functionality, then the 3 rules above apply similarly



# Sec 5. Group Management API

- API between Application and Group stack
- init(out Handle s)
  - This call creates a multicast socket that is bound to some virtual multicast interface and provides a corresponding handle to the application programmer, which will be used for subsequent communication.
- join(in Handle s, in URL g)
  - This operation initiates a group subscription for the name g, including the corresponding tree access.
- leave(in Handle s, in URI g)
  - This operation results in an unsubscription for the given name g, including the corresponding disconnect of the tree.
- send(in Handle s, in URI g,in Message m)
  - This call sends data m to the multicast group name g. It simultaneously initiates creation of the group state, if not already present.
- receive(in Handle s, out URI g, out Message m)
  - This call delivers data m to the application along with an indicator of the group membership.



## Sec. 6 Protocol definition

- Messages between RELOAD nodes
- Supports different tree formation algorithms described earlier
- Control messages are propagated using overlay routing
- Message categories
  - ALM Usage:
    - Tree life-cycle (create, join, leave, re-form, heartbeat)
  - Hybrid ALM Usage:
    - Tree life-cycle
    - AMT gateway advertisement and discovery
    - Peer region and multicast properties



# New RELOAD Usages

- Applications of RELOAD are restricted in terms of the data types they can store in the overlay → usage
- RELOAD is extendible in that new usages can be defined
- ALM applications need additional data types to the base RELOAD types → define new usage
- Define 2 new usages
  - ALM Usage
  - Hybrid ALM Usage



# **ALM Usage**

- ALM applications use the RELOAD data storage functionality to store a groupID when a new ALM tree is created, and to retrieve groupIDs for existing ALM trees.
- ALM applications use the RELOAD data storage functionality to store a set of attributes for an ALM tree,
  - E.g. owner, tree size, tree height, tree formation algorithm, and join criteria.
- ALM applications and management tools use the RELOAD data storage functionality to store diagnostic information about the operation of tree,
  - average number of trees, delay from source to leaf nodes, bandwidth use, lost packet rate.
  - In addition, diagnostic information may include statistics specific to the tree root, or to any node in the tree.



# Hybrid ALM Usage

- HALM applications use the RELOAD data storage functionality to store a set of attributes for a AMT Gateway that can connect to at least one node in the overlay.
- HALM applications use the RELOAD data storage functionality to store a set of attributes about a native multicast region associated with an AMT Gateway.
- HALM applications and management tools use the RELOAD data storage functionality to store diagnostic information about the operation of AMT and ALM interconnections.



# V01 Changes Being Discussed

- Provide a more detailed, illustrative sample use case in section 4 that explains what actually can be achieved and how.
- Move section 7 up just behind section 4 and reflect the achievable operations directly in reload usages.



## **Experimental Plan**

- We are looking for a RELOAD implementation that is consistent with the current RELOAD spec
  - draft-ietf-p2psip-base-07



# RG Action Requested

Request that the RG adopt this as an RG deliverable for future RFC submission