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Recall (1): Problem Statement

o Group communication is implemented on different layers 
and is based on different technologies

- This results in several forwarding paths and varying 
group addresses (namespaces)

Objectives:
1. Enable any application programmer to implement 

independently of underlying delivery mechanisms

2. Make applications efficient, but robust w.r.t. 
deployment aspects
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Recall (2): What is the Draft About?

o The current draft provides

- a common multicast API on app. layer that abstracts 
group communication from distribution technologies

- abstract naming and addressing by multicast URIs

- mapping between naming and addressing

- definition of protocol interaction to bridge multicast 
data between overlay and underlay
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Example (1)

Current multicast API in Java:

o App. A and B decide on technology 
during programming

o MulticastSocket sock = new MulticastSocket(mcPort);

o sock.joinGroup(InetAddress.getByName("224.0.0.4"));

What happens underneath?

o Group management and data forwarding is based on 
“224.0.0.4”

IPv6

Member B
224.0.0.4

IPv4

Member A 
224.0.0.4
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Example (2)

Common multicast socket API:

o App. A and App. B subscribe to logical ID
o MulticastSocket sock = new MulticastSocket(mcPort);

o sock.joinGroup(“myGroup.org”);

What happens underneath?

o Mapping of “myGroup.org” on a technology identifier

o Group management and forwarding 
is based on a separate technology-specific 
identifier

IPv6

Member B
myGroup.org

IPv4

Member A 
myGroup.org
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Why do we Focus on Multicast?

o IP layer multicast is not globally deployed

o Several technologies around to bridge inter-domain 
deployment problem

- application layer multicast, …

o Common high level API abstraction is required 

- to produce code that runs in any environment

- to construct hybrid solutions
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Status

o Version 00/01 presented at IETF 76, Hiroshima

o Current version: 02

o Individual feedback received on version 02

- Feedback by the RG is highly appreciated!

o Work on prototype implementation (C++)
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Changes from Version 01 to 02 (1)

1. Document restructured to clarify the realm of 
document overview and specific contributions such 
as naming and addressing

2. A clear separation of naming and addressing was 
drawn. Multicast URIs have been introduced

o Now, namespace is bound to Group ID

3. Clarified and adapted the API calls
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Changes from Version 01 to 02 (2)

4. Introduced Socket Options

5. Deployment use cases moved to an appendix

6. Simple programming example added

7. Many editorial improvements
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Terminology

o Group Name: application identifier that is used by 
applications to manage a multicast group

o Group Address: routing identifier that is used to 
distribute multicast data

o Interface: forwarding instance of a distribution 
technology on a given node 
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Group Name (1)

o Applications subscribe to Group Name(s)

o Group Communication stack maps Name to 
Group Address

How do we encode the Group Name?

o Wise choice is important for mapping function

o Variant A: Applications use pure string representation

o Variant B: Applications use data type that reflects 
namespace
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Group Name (2)

o Typically, library that implements API provide high 
level data types

o Using such data type would implicitly determine the 
namespace

o A meta-data type that reflects identifier + namespace 
is an URI
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Proposed URI Scheme

o scheme "://" group "@" instantiation ":" 
port "/" sec-credentials

o scheme: specification of assigned ID

o group: identifies the group

o instantiation: ID of the entity that generates the 
instance of the group

o port: ID of a specific application at a group instance

o sec-credentials: used for optional authentication

o Example: ipv4://224.0.0.22@1.2.3.4:5000/groupkey
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Socket Options

o getInterfaces(out Interface[] i)

- Returns a list of all available multicast comm. interfaces

o addInterface(in SocketHandle h, in Interface i) 

- Adds a distribution channel to a socket

o delInterface(in SocketHandle h, in Interface i)

- Removes an interface from the socket

o setTTL(in SocketHandle h)

- Defines maximum hop count

o Something else?
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Open Issues

o Definition of mapping scheme including ASM/SSM 
consideration

o More detailed description of the URI scheme usage

- Use case for security credentials

o Description of corporate usage of current and 
common group communication API

o Consensus that technology discovery out-of-scope?

o Regarding implementation: Are there any convenient 
functions that you would like to have?
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Conclusion

o Clear separation between Group Name and Address

o Group Name data type: URI

o Next step: defining mapping mechanism

o More feedback is needed by RG members!
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