
1

A Common API for 
Transparent Hybrid Multicast 

(draft-waehlisch-sam-common-api-02)

Matthias Wählisch, Thomas C. Schmidt

Stig Venaas

{waehlisch, t.schmidt}@ieee.org, 
stig@cisco.com



2

Recall (1): Problem Statement

o Group communication is implemented on different layers 
and is based on different technologies

- This results in several forwarding paths and varying 
group addresses (namespaces)

Objectives:
1. Enable any application programmer to implement 

independently of underlying delivery mechanisms

2. Make applications efficient, but robust w.r.t. 
deployment aspects



3

Recall (2): What is the Draft About?

o The current draft provides

- a common multicast API on app. layer that abstracts 
group communication from distribution technologies

- abstract naming and addressing by multicast URIs

- mapping between naming and addressing

- definition of protocol interaction to bridge multicast 
data between overlay and underlay



4

Example (1)

Current multicast API in Java:

o App. A and B decide on technology 
during programming

o MulticastSocket sock = new MulticastSocket(mcPort);

o sock.joinGroup(InetAddress.getByName("224.0.0.4"));

What happens underneath?

o Group management and data forwarding is based on 
“224.0.0.4”

IPv6

Member B
224.0.0.4

IPv4

Member A 
224.0.0.4



5

Example (2)

Common multicast socket API:

o App. A and App. B subscribe to logical ID
o MulticastSocket sock = new MulticastSocket(mcPort);

o sock.joinGroup(“myGroup.org”);

What happens underneath?

o Mapping of “myGroup.org” on a technology identifier

o Group management and forwarding 
is based on a separate technology-specific 
identifier

IPv6

Member B
myGroup.org

IPv4

Member A 
myGroup.org



6

Why do we Focus on Multicast?

o IP layer multicast is not globally deployed

o Several technologies around to bridge inter-domain 
deployment problem

- application layer multicast, …

o Common high level API abstraction is required 

- to produce code that runs in any environment

- to construct hybrid solutions



7

Status

o Version 00/01 presented at IETF 76, Hiroshima

o Current version: 02

o Individual feedback received on version 02

- Feedback by the RG is highly appreciated!

o Work on prototype implementation (C++)



8

Changes from Version 01 to 02 (1)

1. Document restructured to clarify the realm of 
document overview and specific contributions such 
as naming and addressing

2. A clear separation of naming and addressing was 
drawn. Multicast URIs have been introduced

o Now, namespace is bound to Group ID

3. Clarified and adapted the API calls



9

Changes from Version 01 to 02 (2)

4. Introduced Socket Options

5. Deployment use cases moved to an appendix

6. Simple programming example added

7. Many editorial improvements



10

Terminology

o Group Name: application identifier that is used by 
applications to manage a multicast group

o Group Address: routing identifier that is used to 
distribute multicast data

o Interface: forwarding instance of a distribution 
technology on a given node 



11

Group Name (1)

o Applications subscribe to Group Name(s)

o Group Communication stack maps Name to 
Group Address

How do we encode the Group Name?

o Wise choice is important for mapping function

o Variant A: Applications use pure string representation

o Variant B: Applications use data type that reflects 
namespace



12

Group Name (2)

o Typically, library that implements API provide high 
level data types

o Using such data type would implicitly determine the 
namespace

o A meta-data type that reflects identifier + namespace 
is an URI



13

Proposed URI Scheme

o scheme "://" group "@" instantiation ":" 
port "/" sec-credentials

o scheme: specification of assigned ID

o group: identifies the group

o instantiation: ID of the entity that generates the 
instance of the group

o port: ID of a specific application at a group instance

o sec-credentials: used for optional authentication

o Example: ipv4://224.0.0.22@1.2.3.4:5000/groupkey



14

Socket Options

o getInterfaces(out Interface[] i)

- Returns a list of all available multicast comm. interfaces

o addInterface(in SocketHandle h, in Interface i) 

- Adds a distribution channel to a socket

o delInterface(in SocketHandle h, in Interface i)

- Removes an interface from the socket

o setTTL(in SocketHandle h)

- Defines maximum hop count

o Something else?



15

Open Issues

o Definition of mapping scheme including ASM/SSM 
consideration

o More detailed description of the URI scheme usage

- Use case for security credentials

o Description of corporate usage of current and 
common group communication API

o Consensus that technology discovery out-of-scope?

o Regarding implementation: Are there any convenient 
functions that you would like to have?



16

Conclusion

o Clear separation between Group Name and Address

o Group Name data type: URI

o Next step: defining mapping mechanism

o More feedback is needed by RG members!


	A Common API for �Transparent Hybrid Multicast�(draft-waehlisch-sam-common-api-02)
	Recall (1): Problem Statement
	Recall (2): What is the Draft About?
	Example (1)
	Example (2)
	Why do we Focus on Multicast?
	Status
	Changes from Version 01 to 02 (1)
	Changes from Version 01 to 02 (2)
	Terminology
	Group Name (1)
	Group Name (2)
	Proposed URI Scheme
	Socket Options
	Open Issues
	Conclusion

