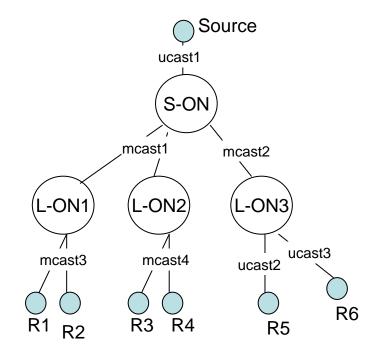
Multiparty Transport Overlay Control Protocol (MTOCP) draft-kellil-sam-mtocp-00.txt

77th IETF Meeting

Anaheim, CA, USA

Authors:


Mounir Kellil Christophe Janneteau Pierre Roux CEA, LIST

Objective

- Efficient support of group communications
 - Cope with the moderate deployment of IP multicasting in today's Internet.
 - Hide network heterogeneity to the application layer
 - IPv4 and IPv6.
 - Multicast and non-multicast networks.
 - Provide an application-agnostic group data delivery service.
 - Provide a multicast routing-agnostic delivery service.
 - Maximize the use of IP multicast available in the network.
- Solution: Multiparty Transport Overlay Control Protocol (MTOCP)
 - Idea:
 - Place the multiparty overlay paradigm at the transport layer: Multiparty Transport Overlay (MTO).
 - Dynamic addition and removal of MTO's transport connections.

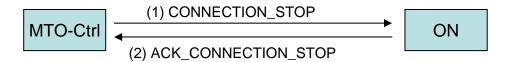
MTO Architecture Components (1/2)

- MTO Tree: a set of overlay nodes (ONs) interconnected through unicast or multicast transport connections.
 - Overlay Node (ON):
 - Forward data based on local forwarding table (packets received on a given "input" transport connection will be forwarded to one or more "output" transport connections).
 - No IP-in-IP tunneling.
 - 3 types but a common functionality: source overlay node (S-ON), on tree overlay node (O-ON), and leaf overlay node (L-ON).
 - Transport Connections of MTO tree
 - UDP.
 - Unicast or Multicast destination address
 - IPv4 or IPv6 addresses.
 - Transport Connection ID: <source address, source port, destination address, destination port>.

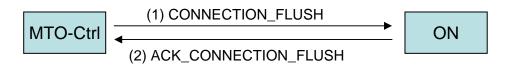
Example of an MTO Tree

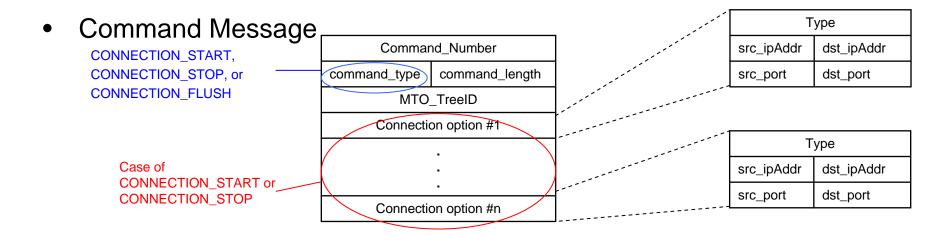
MTO = Multiparty Transport Overlay

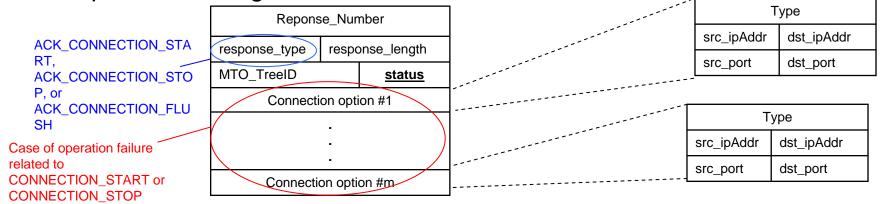
MTO Architecture Components (2/2)

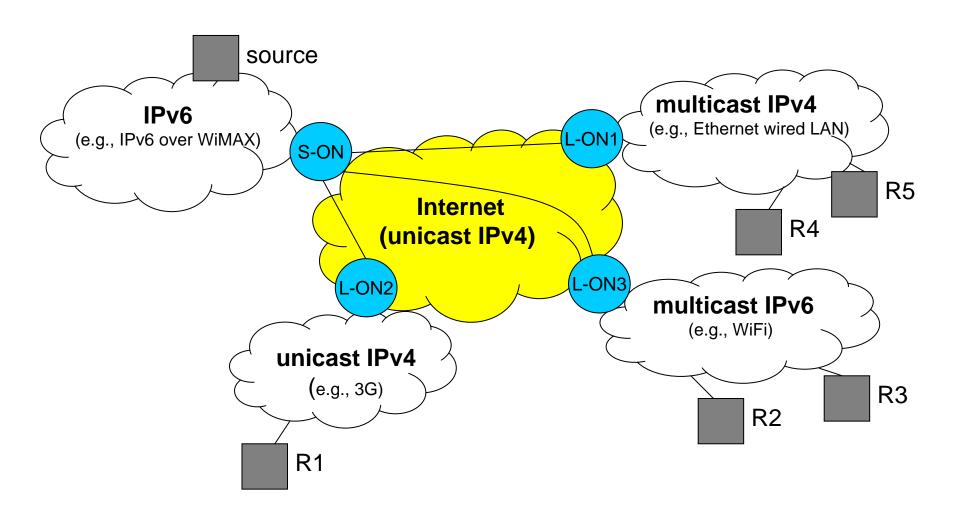

- MTO controller (MTO-Ctrl): control the creation, update, and removal of the MTO tree in the network.
 - Define an MTO tree through: an MTO tree ID, a list of ONs and associated transport connections.
 - Assign a couple of unique ports (source and destination ports) per MTO tree.
 - Ports SHOULD be used for all transport connections belonging to the same MTO tree.
 - MTO-Ctrl MAY choose to use a different destination port for a given connection of an MTO tree.
 - e.g., the destination port is the listening port of a unicast terminal (MTO-Ctrl MAY learn the destination port through an out-of-band mechanism).
 - Push to (and further update for) each ON its MTO Tree-specific forwarding table in the form of a list of input and output transport connections.
 - Remove/flush transport connections from ONs.

MTOCP Protocol - Operations


- MTOCP: operates between the MTO-Ctrl and ON to manage the MTO tree.
- Message exchange is initiated by MTO-Ctrl.
- Use of TCP for MTOCP message transport.
- Three types of exchanges
 - Connection Addition
 - Add one or multiple connections of a given MTO tree


- Connection Removal
 - Remove one or multiple connections of a given MTO tree


- Connection Flush
 - Remove all the connections of a given MTO tree


MTOCP Protocol – Message Structure

Response Message

Example of MTO Tree Deployment in Today's Internet

MTOCP Implementation Status

- IPv4 support: done.
- IPv6 support: in progress.
- MTOCP implementation integrated in a full contextaware multiparty transport platform (EU FP7 Project C-CAST):
 - MTOCP, and
 - Network context-aware service
 - Network capability detection (multicast, IPv4, IPv6, etc).
 - Dynamic creation and push of ONs and unicast terminal lists to MTO-Ctrl.
 - Leverage of standard protocols
 - SIP protocol for multiparty session initiation (session invitation to terminals).
 - IGMP/MLD for multicast terminals to subscribe to multicast groups.
 - PIM-SM for multicast routing.