Coexistence of Address Assignment Methods

or

HOW TO DEAL WITH BINDING COLLISIONS in an HETEROGENEOUS ENVIRONMENT?
What is a binding collision?

– Entry \([IP \text{ Address}, \text{vlan}, \text{anchor}]\) exists in the binding table

– Collision happens when a candidate entry with same key \([IP \text{ Address}, \text{vlan}]\) and anchor’ ≠ anchor is « discovered »

→ How to choose one over the other? FCFS? Discovery method? Best credentials? ...

What is an heterogeneous environment?

• Different discovery methods (NDP, DHCP, data, Static, etc.)
• Different credentials carried by messages used by the various methods
• Different origins for messages used by various methods

→ In real world, no one-fits-all discovery method, credentials, origins.
Variety of methods for discovering bindings

- DHCP-snooping
- NDP snooping
- Data snooping
- Statically created
- « Local » to the switch (L2/L3)
- ...

→ Collisions within one method is usually well-understood/defined (FCFS, LCFS, etc.)
→ Collisions between two methods is TBD
Variety of credentials carried by messages (and relatives) used for the discovery

- No credentials
- Consistent SMAC & Layer link-layer address
- Cryptographically proven
- Certificate proven
- EAP proven
Variety of origins for messages used for the discovery

![Diagram of L2 switch connections]

- Access ports to trusted L3-devices
- Trunks to trusted L2-devices
- Access ports to untrusted L3-devices
- Trunks to untrusted L2-devices
How to compile all variables?
How to compare different sets?

- DHCP-discovered vs NDP with CGA?
- Static entry vs DHCP-discovered
- NDP on trusted access vs DHCP on untrusted access
- ...

Preference level

A. We define preference “factors”, preference value and preference level:
 • A “factor” is associated with
 o a property of the port from which the entry was discovered
 o a property of the discovery method
 o or a property of the binding itself
 • Each factor is given a number $0 \leq f \leq n$: the bigger, the more prevalent
 • We compute the preference value of a factor as 2^f
 • We compute Preflevel = \sumpreference_values associated with a binding
Factors

From least to most prevalent, proposed factor values /preference values are:

- / 0. NDP-SNOOPING: The entry was learnt by snooping NDP traffic (DAD, etc.)
0 / 1. LLA_MAC_MATCH: LLA (found at L3) and MAC (found at L2) are identical
1 / 2. TRUNK_PORT: The entry was learnt from a trunk port (connected to another switch)
2 / 4. ACCESS_PORT: The entry was learnt from an access port (connected to a host)
3 / 8. TRUSTED_PORT: The entry was learnt from a trusted port
4 / 10. TRUSTED_TRUNK: The entry was learnt from a trusted trunk
5 / 20. DHCP_SNOOPING: The entry is assigned by DHCP
6 / 40. CGA_AUTHENTICATED: The entry is CGA authenticated
7 / 80. EAP_AUTHENTICATED: The entry is EAP authenticated
8 /100. CERT_AUTHENTICATED: The entry is authenticated with a certificate
10 /200. STATIC: this is a operator configured entry (static or local)
Example

Binding Table has 3 entries, 3 dynamic
Codes: L - Local, S - Static, ND - Neighbor Discovery, DHC - DHCP

Preflevel flags (prlvl):

<table>
<thead>
<tr>
<th>prlvl</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>MAC and LLA match</td>
</tr>
<tr>
<td>0002</td>
<td>Orig trunk</td>
</tr>
<tr>
<td>0004</td>
<td>Orig access</td>
</tr>
<tr>
<td>0008</td>
<td>Orig trusted access</td>
</tr>
<tr>
<td>0010</td>
<td>Orig trusted trunk</td>
</tr>
<tr>
<td>0020</td>
<td>DHCP assigned</td>
</tr>
<tr>
<td>0040</td>
<td>Cga authenticated</td>
</tr>
<tr>
<td>0080</td>
<td>Cert authenticated</td>
</tr>
<tr>
<td>0100</td>
<td>EAP authenticated</td>
</tr>
<tr>
<td>0200</td>
<td>Operator assigned</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IPv6 address</th>
<th>Link-Layer Adr</th>
<th>Interface</th>
<th>vlan</th>
<th>prlvl</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td>FE80::3C99:78CB:3EDC:47F7</td>
<td>AABB.CC01.F500</td>
<td>Et0/0</td>
<td>100</td>
</tr>
<tr>
<td>ND</td>
<td>FE80::A8BB:CCFF:FE01:F600</td>
<td>AABB.CC01.F600</td>
<td>Et1/0</td>
<td>100</td>
</tr>
<tr>
<td>ND</td>
<td>FE80::A8BB:CCFF:FE01:F700</td>
<td>AABB.CC01.F700</td>
<td>Et2/0</td>
<td>100</td>
</tr>
<tr>
<td>ND</td>
<td>FE80::A8BB:CCFF:FE01:F800</td>
<td>AABB.CC01.F800</td>
<td>Et3/0</td>
<td>100</td>
</tr>
<tr>
<td>ND</td>
<td>2001:DB8::3008:BC73:6873:F128</td>
<td>AABB.CC01.F500</td>
<td>Et0/0</td>
<td>100</td>
</tr>
<tr>
<td>DHC</td>
<td>2001:DB8::F981:4906:29FB:78B5</td>
<td>AABB.CC01.F600</td>
<td>Et1/0</td>
<td>100</td>
</tr>
<tr>
<td>S</td>
<td>2001:DB8::1</td>
<td>AABB.CC01.F700</td>
<td>Et2/0</td>
<td>100</td>
</tr>
<tr>
<td>ND</td>
<td>2001:DB8::BC10:1361:4712:AC5E</td>
<td>AABB.CC01.F800</td>
<td>Et3/0</td>
<td>100</td>
</tr>
<tr>
<td>L</td>
<td>2001:DB8::2</td>
<td>AABB.CC01.F100</td>
<td>SVI100</td>
<td>100</td>
</tr>
</tbody>
</table>
Preference algorithm

B. Define the rules (applied in this order). Updating an entry attribute is:

1. Allowed, if no entry exist
2. Denied if existing entry is more prefered (with higher preflevel)
3. Allowed if existing entry is less prefered (with smaller preflevel)
4. Allowed, if received candidate on a trusted port
5. Denied if existing entry respond to pool (DAD NS)
6. Allowed otherwise
What’s next?

• Current document is draft-levy-abegnoli-savi-plbt-02.txt
• One implementation ...
• -01 reviewed/commented by 2 or 3 people
• What to do with this work?

 o Merge with « a » framework WG document?
 o Make it part of one of the existing WG?
 o Make it a separate WG document?
 o ?