CNGI-CERNET2 SAVI Deployment Update

China Education and Research Network (CERNET)
/Tsinghua Univ.
IETF77, Anaheim
March 23, 2010
Outline

• SAVI Deployment in CNGI-CERNET2
• SAVI Switches Testing
• SAVI Management System and MIB Design
• Discussion on SAVI-SLAAC
• Conclusion
Brief Introduction

- CNGI is China Next Generation Internet
- CNGI-CERNET2
 - CERNET: was the 2nd Large ISP in China, 2000+ university campus networks, 20M+ users
 - CERNET2 is the largest IPv6 network
- CNGI-CERNET2 SAVI Deployment Plan
 - 100 universities campus networks nationwide
 - 1 Million users
 - Time frame: 2008-2010
 - SAVI software upgrade at about 20K+ access switches
 - SAVI management system installation in 100 campuses
- China Telecom signed collaboration agreement with Tsinghua Univ. on IPv6 SAVI collaboration recently
SAVI switches installation: 100 Univ. campus net (red dot)
Example: Tsinghua Univ. campus network is being deployed (software upgrade at access switch)

<table>
<thead>
<tr>
<th>subnets</th>
<th>switches</th>
<th>port</th>
<th>hosts</th>
<th>users</th>
</tr>
</thead>
<tbody>
<tr>
<td>114</td>
<td>1018</td>
<td>23414</td>
<td>22644</td>
<td>20280</td>
</tr>
</tbody>
</table>

Campus Backbone (IPv4/IPv6)

Office/Teaching area
- Arch
- GZT
- CC1
- CC2
- Lib
- FIT
- Main
- Resource
- 9003

Faculty apartments
- 6#1
- 6#1

Aggregation Level
- SCI

Access Level
- H1
- 16#
- NW
- SE
- HQY
- EDU
- shop

Student Dorm
- ZJ
- ZJ

SAVI-access switch
20K users (students)
Example: SAVI deployment in Tsinghua FIT building

Prefix granularity anti-spoofing by RPF

Host granularity anti-spoofing by SAVI
Scenarios in Deployment

• DHCP-only
 – Only DHCP and link local address are allowed.
 – DHCP and link local address snooping are enabled.

• SLAAC-only
 – Only SLAAC address is allowed.
 – SLAAC snooping is enabled.

• DHCP-SLAAC-Mixed
 – DHCP and SLAAC address are allowed.
 – DHCP snooping and SLAAC snooping are enabled.

• Static addresses (usually for servers) are manually configured in the above scenarios.
Scenarios in Deployment

- Each administrator selects the address assignment scenario in its subnet
 - E.g. Tsinghua uses dhcp-slaac-mixed
- SEND is considered the same as SLAAC
- dhcp-snooping implementation in switch conforms to draft-savi-dhcp-02 (without optional functions)
- slaac-snooping implementation in switch conforms to draft-bi-stateless-00
 - Will be discussed in the last part of this ppt
- All SAVI-switches have been tested
 - Will be discussed in the next part of this ppt
Prioritization

• Static address has the highest prior
 – The administrator make sure the static address won’t be assigned by dhcp server
 – Only the administrator can remove

• Stateless and DHCP addresses are treated equally.
 – Once bound, always bound during lifetime (unless the host is off-link)
 – A host has to detect conflict after assigned an address by DHCP (in dhcp-slaac-mix scenario)
Command Line Design

• **Snooping**
 – Enabled at global view or vlan view

• Command line: **XXX Snooping enable**
 – Start snooping and binding
 – Drop the server-end message (DHCP reply, RA) by default, except for packets from anchor with attribute XXX-Trust

• For example, in DHCP-only scenario:
 – *Dhcp snooping enable*
 – *NDP snooping link-local enable*

• Undo XXX snooping
 – Stop snooping
 – Stop filter server-end message

• SHOULD write memory if snooping is enabled, and enable snooping automatically after reboot.
Command Line Design

• Verification
 – Enabled at port view
 – *IP check source IP-address*
Command Line Design

- Port configuration
- Attached to monitored host
 - *IP check source IP-address*
- Attached to router or DHCP server/relay
 - *RA trust* or *DHCP trust*
- Fully trusted port
 - *RA trust* and *DHCP trust*
- Default port
 - No configuration
Command Line Design

• **View & Modification**
 – At global view

• **View:** show all the IPv6 bindings
 – `display ipv6 check source binding table`

• **Modification:** add or del bindings manually
 – `ipv6 check source binding table add IP XXX MAC XXX PORT XXX TYPE XXX [LIFETIME XXX]`
 – `Ipv6 check source binding table del IP XXX PORT XXX`
Console Example

<table>
<thead>
<tr>
<th>MAC</th>
<th>IP</th>
<th>VLAN Port</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>001d-09b6-a763</td>
<td>2001::7D1B:A5AE:44DE:FCB1</td>
<td>GigabitEthernet1/0/3</td>
<td>ND-SNP</td>
</tr>
<tr>
<td>001d-09b6-a763</td>
<td>FE80::B47E:A4DD:166D:89E0</td>
<td>GigabitEthernet1/0/3</td>
<td>ND-SNP</td>
</tr>
<tr>
<td>001d-09b6-a763</td>
<td>2001::B47E:A4DD:166D:89E0</td>
<td>GigabitEthernet1/0/3</td>
<td>ND-SNP</td>
</tr>
<tr>
<td>001d-09b6-a763</td>
<td>2001::1004</td>
<td>GigabitEthernet1/0/3</td>
<td>DHCPv6-SNP</td>
</tr>
</tbody>
</table>

Binding State Table of **H3C S5500**

Entry:

Source IP | Source MAC | Vlan ID | Type (DHCP or ND)
Real Deployment

• FIT Building of Tsinghua Univ
• From Oct 2009 (about 5 months)
• No initial DAD-NS loss observed (link local addr bound)
• *Digital China* S3950 Switches
Real Deployment

61 addresses bound at a 24-ports switch, multiple addr per host

<table>
<thead>
<tr>
<th>MAC</th>
<th>IPv6 Address</th>
<th>Interface</th>
<th>VLAN ID</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>00-1d-0f-12-44-f9</td>
<td>2002:a66f:cb72:7:315e:d3ac:b96:e7a</td>
<td>EthernetC/0/47</td>
<td>1</td>
<td>SAC_BOUND</td>
</tr>
<tr>
<td>00-1d-0f-12-44-f9</td>
<td>2001:da8:200:9002:316c:d6ac:b96:c7a</td>
<td>EthernetC/0/47</td>
<td>1</td>
<td>SAC_BOUND</td>
</tr>
<tr>
<td>00-16-41-a8-b7-2f</td>
<td>2001:da8:200:9002:16:41ff:feaa:b72f</td>
<td>EthernetC/0/29</td>
<td>1</td>
<td>SAC_BOUND</td>
</tr>
<tr>
<td>00-16-41-a8-b7-2f</td>
<td>2001:da8:200:9002:3:562::a49:1012:b47f</td>
<td>EthernetC/0/29</td>
<td>1</td>
<td>SAC_BOUND</td>
</tr>
</tbody>
</table>
SAVI Switch Testing
SAVI-Software upgradable

- Savi-upgradable switches in our deployment
 - H3C (3Com): S5500EI, S5500SI, S5120EI, E126A, E152, E328, E352
 - ZTE: ZXR10 8900, 5900, 3900A
 - Digital China (spun off from Lenovo): DCRS-5950, 3950
 - Ruijie: RG-S8600, S5750, S5760, S2900, S2600
 - Bitway: BitStream 7000, 6000, 3000
 - Centec: E600 and E300

- Cisco and Huawei are also interested to collaborate with CERENT2 to upgrade
SAVI switch test for 100 campus networks
Catalogs of SAVI Testing

- Conformance testing
- Performance testing
- Test-bed (interoperability) testing
SAVI Switch under Test
(form difference vendors)
Performance Testing (AGILENT N2X)
Performance Testing: SAVI filtering enabled for dhcpv6/slaac/mixed/static

<table>
<thead>
<tr>
<th>Throughput</th>
<th>78bytes</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>79bytes</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>512bytes</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1518bytes</td>
<td>-</td>
</tr>
<tr>
<td>Delay (Min/Average/Max)</td>
<td>78bytes</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>79bytes</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>512bytes</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>1518bytes</td>
<td>μs</td>
</tr>
<tr>
<td>Packet loss</td>
<td>78bytes</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>79bytes</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>512bytes</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1518bytes</td>
<td>-</td>
</tr>
</tbody>
</table>
Conformance Testing (TTCN3 based testing system developed by Tsinghua)
Conformance Testing: DHCP-only

<table>
<thead>
<tr>
<th>2.1.1</th>
<th>DHCP Solicit</th>
<th>Use unbounded link-local addr send DHCP-Solicit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.2</td>
<td>DHCP Solicit-Advertise</td>
<td>Use bounded link-local addr send DHCP-Solicit then receive Advertise</td>
</tr>
<tr>
<td>2.1.3</td>
<td>DHCP Request</td>
<td>Use unbounded link-local addr send DHCP-Request</td>
</tr>
<tr>
<td>2.1.4</td>
<td>DHCP Request-Reply</td>
<td>Use bounded link-local addr send DHCP-Request then received reply</td>
</tr>
<tr>
<td>2.1.5</td>
<td>DHCP Confirm</td>
<td>Use unbounded link-local addr send DHCP Confirm</td>
</tr>
<tr>
<td>2.1.6</td>
<td>DHCP Confirm-Reply</td>
<td>Use bounded link-local addr send DHCP Confirm then received reply</td>
</tr>
<tr>
<td>2.1.7</td>
<td>DHCP Decline</td>
<td>Use bounded and unbounded link-local addr send DHCP Decline</td>
</tr>
<tr>
<td>2.1.8</td>
<td>DHCP Release</td>
<td>Use bounded and unbounded link-local addr send DHCP Release</td>
</tr>
<tr>
<td>2.1.9</td>
<td>DHCP Rebind</td>
<td>Use bounded and unbounded link-local addr send DHCP Rebind</td>
</tr>
<tr>
<td>2.1.10</td>
<td>DHCP Renew</td>
<td>Use bounded and unbounded link-local addr send DHCP Renew</td>
</tr>
</tbody>
</table>
Conformance Testing: SLAAC-only

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1</td>
<td>LinkLocalAddr-DAD-NS</td>
<td>Send DAD-NS Use LinkLocal Addr as Target</td>
</tr>
<tr>
<td>2.2.2</td>
<td>LinkLocalAddr-DAD-NS-NA</td>
<td>Send DAD-NS Use LinkLocal Addr as Target and received NA</td>
</tr>
<tr>
<td>2.2.3</td>
<td>LinkLocalAddr-RS</td>
<td>Use bounded and unbouneded link-local addr send SLAAC RS</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Global Addr-DAD-NS</td>
<td>Use unbounded and bounded Global addr send DAD NS without receivd NA.</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Global Addr-DAD-NS-NA</td>
<td>Use unbounded and bounded Global addr send DAD NS then receivd NA.</td>
</tr>
</tbody>
</table>
Conformance Testing: DHCP-SLAAC-MIX

<table>
<thead>
<tr>
<th>2.3.1</th>
<th>DHCP Request</th>
<th>Send DHCP Request use bounded and unbounded addr Under MIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.2</td>
<td>DHCP-DAD-NS</td>
<td>Send DHCP Request then send DAD NS use Bounded and unbounded addr without received NA</td>
</tr>
<tr>
<td>2.3.3</td>
<td>DHCP-DAD-NS-NA</td>
<td>Send DHCP Request then send DAD NS use Bounded and unbounded addr with received NA</td>
</tr>
<tr>
<td>2.3.4</td>
<td>DHCP-Confirm-NS</td>
<td>Send DHCP Confirm then send DAD NS use Bounded and unbounded addr without received NA</td>
</tr>
<tr>
<td>2.3.5</td>
<td>DHCP-Confirm-NS-NA</td>
<td>Send DHCP Confirm then send DAD NS use Bounded and unbounded addr with received NA</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Static Binding</td>
<td>Check static Binding's function</td>
</tr>
</tbody>
</table>
Test-bed (interoperability) testing
Test-bed (interoperability) testing
Testbed testing: DHCPv6-only

- Host movement (across ports in one switch)
- Host movement (across switches)
- Topology change (switch uplinks to another port of the upstream switch)
- Topology change (switch uplinks to another upstream switch)
- Switch reboot
- NDP can not setup binding
- Address conflict (within one switch)
- Address conflict (across switch)
- Static address binding in dhcp-only scenario
Testbed testing: SLAAC-only

- Host movement (across ports in one switch)
- Host movement (across switches)
- Topology change (switch uplinks to another port of the upstream switch)
- Topology change (switch uplinks to another upstream switch)
- Switch reboot
- DHCP can not setup binding
- Address conflict (within one switch)
- Address conflict (across switch)
- Static address binding in slaac-only scenario
Testbed testing: DHCP-SLAAC-mix

- Host movement (across ports in one switch)
- Host movement (across switches)
- Topology change (switch uplinks to another port of the upstream switch)
- Topology change (switch uplinks to another upstream switch)
- Switch reboot
- DHCP and SLAAC co-existence
- Address conflict (within one switch) Address conflict (across switch)
- Static address binding in dhcp-slaac-mix scenario
Interoperability test for host OS

- Windows XP with SP3
- Windows Vista
- Windows 7
- Linux
- MAC OS (to be tested)
- Some dhcpv6 client software
SAVI Management System and MIB Design
Motivation

• The CERNET Network Center is designing a Network management system for SAVI
• Set and Get SAVI status using standard management protocol like SNMP
• Provide standard operation interface for manager
Function

• Set :
 – SAVI-DHCP or SAVI-SLAAC function
 – Anchor (switch port) type
 – Binding limitation of anchor

• Get:
 – Binding State Table entries
 – Filtering Table entries
 – Statistics
CERNET2 SAVI Management System

Ipv6SaviObjectsBindingTable

<table>
<thead>
<tr>
<th>ifindex</th>
<th>Identifier</th>
<th>MacAddress</th>
<th>Type</th>
<th>State</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>fe80::20f:f7ff:feab:35cc</td>
<td>A9-B4-C5-D6</td>
<td>dhcp</td>
<td>bound</td>
<td>12345</td>
</tr>
<tr>
<td>2</td>
<td>2001:da8:200:900b:79e8:72d6:6f84:175</td>
<td>00-01-6C-44-E6-93</td>
<td>slaac</td>
<td>start</td>
<td>60002</td>
</tr>
<tr>
<td>4</td>
<td>fe80::20f:f7ff:feb0:5dc</td>
<td>2F-63-5D-8A</td>
<td>slaac</td>
<td>query</td>
<td>879</td>
</tr>
<tr>
<td>5</td>
<td>2001:da8:200:900b:2018c:fe44:ee693</td>
<td>01-00-5F-8D</td>
<td>dhcp</td>
<td>bound</td>
<td>544</td>
</tr>
<tr>
<td>6</td>
<td>fe80::23f:f7ff:feab:5dc0</td>
<td>11-5D-6F-33</td>
<td>static</td>
<td>bound</td>
<td>23455</td>
</tr>
</tbody>
</table>
Structure of SAVI-MIB

• Two separate MIB tree
 – IPV4SAVI-MIB for IPv4
 – IPV6SAVI-MIB for IPv6
 – They have Similar Structure

• Following we illustrate IPV6SAVI-MIB
MIB tree
Structure of IPV6SAVI-MIB

- ipv6SaviObjectsStatus
 - SAVI-DHCP/SAVI-SLAAC Status

- ipv6SaviObjectsMaxDadDelay, ipv6SaviObjectsMaxDadPrepareDelay,
 - constants of SAVI

- ipv6SaviObjectsIfStatusTable
 - Validation type of anchor
 - Trust type of anchor
 - Binding limitation of anchor

- ipv6SaviObjectsBindingTable
 - Binding State Table entries
Structure of IPV6SAVI-MIB

- ipv6SaviObjectsIfStatusTable
 - ipv6SaviObjectsIfStatusIfIndex InterfaceIndex,
 - ipv6SaviObjectsIfStatusCheckStatus Integer32,
 - ipv6SaviObjectsIfStatusTrustStatus Integer32,
 - ipv6SaviObjectsIfStatusBindingNum Unsigned32
Structure of IPV6SAVI-MIB

- ipv6SaviObjectsBindingTable
 - ipv6SaviObjectsBindingIfIndex InterfaceIndex,
 - ipv6SaviObjectsBindingType Integer32,
 - ipv6SaviObjectsBindingIdentifier InetAddressIPv6,
 - ipv6SaviObjectsBindingMacAddr MacAddress,
 - ipv6SaviObjectsBindingState Integer32,
 - ipv6SaviObjectsBindingLifetime TimeInterval,
 - ipv6SaviObjectsBindingRowStatus RowStatus
OID For SAVI-MIB

• Parent OID: IP
 – Because SAVI-MIB provide binding information at IP layer.

• sub-identifier
 – The sub-identifier of IP has been used up to 39.
 – 40 for IPV4SAVI-MIB
 – 41 FOR IPV6SAVI-MIB

• Need register a IANA NUMBER for the SAVI MIB
Discussion on SAVI-SLAAC
Solution Scope

- Solution for all stateless addresses, including
 - IPv6 SLAAC address
 - IPv4/v6 non-static manually configured address
Core problem for SAVI-SLAAC

• How to determine the ownership of an address when conflict happens?

• On the aspect of host:
 – DAD is unreliable: NS/NA loss, inactive node, malicious node

• On the aspect of SAVI-device:
 – It is hard or even impossible to determine who is the first to use an address without reliable DAD:
 • First sniffed ≠ First used
 • Detection is unreliable, and may be cheated
A Compromise Solution without Reliable DAD

• Principle:
 – RFC4862 allows host to configure an address after it finishes a DAD, without caring the address might be actually conflict with other hosts due to unreliable DAD (NS/NA loss, inactive node, etc.)
 – Then the goal of SAVI-SLAAC conforms to RFC4862, like “best effort” source address validation
 – Don’t try to fix problem of RFC4862 in SAVI, if necessary, fix it in SLAAC itself (re-chartering)
Binding Set-up Mechanism

- If SAVI switch detects an node finishes a successful DAD by Control plane snooping, then bind the address.

- The initial DAD-NS might be loss, two options:
 - Data-triggered probe (heavy cost to access switch but automatic), or
 - Host repairs the network connection (CERNET2 use this option, but really didn’t meet this problem).

- An address might be bound with multiple nodes due to the unreliable DAD (e.g. inactive node, NA loss), but RFC4862 allows...
Binding Removal Mechanism

• Only remove a binding:
 – Lifetime expires (Lifetime equals prefix lifetime sniffed from RA)
 – After the savi-device detects the anchor turns off-link for a certain period (when savi-device directly connects to host)
Control Plane Snooping based action vs. Data Triggered action

• Control packet snooping MUST be enabled

• Data trigger action CAN be enabled on the required anchors to handle special cases
 – The trade-off between savi-swtich-automaticly or host-manually repairs for special cases is left to network administrator
 – CNGI-CERNET2 make it an optional function. If administrators need, then can ask higher-end switch to implement the optional function
Experience of CERNET2 SAVI-SLAAC deployment

• Make SAVI solutions as simple as possible
 – low end access switch can implement by simply software upgrade
• Then SAVI can be deployed widely at access switches directly connects with host
• Then get the better “best effort” results
 – single-host granularity anti-spoofing
 – easily handle the binding removal when host off-link or moving
 – easily handle switch rebooting
Experience of CERNET2 SAVI-SLAAC deployment

• Data triggered binding brings much cost to switch based on feedbacks from vendors
 – More temporal states to keep and memory occupation
 – Consume more CPU computation resource
 – Potentially DoS attacks
 • Hard to do rate limit in reality
 • If do rate limit for CPU slow path in a switch, then all slow path packets will be affected (high end router may be more intelligent), then more important control packets can’t be processed by CPU, will cause more serious problem
Conclusions
Conclusions

• SAVI drafts have been implemented by multiple vendors and being largely deployed in CERNET2
 – draft-ietf-savi-dhcp-02
 – draft-bi-savi-stateless-00
• SAVI switches in CNGI-CERNET2 have been fully tested
• SAVI management system and MIB have been designed
• A light-weight savi-slaac is necessary for low end access switch for large scale deployment
 – Currently, no major problem found
 – For details: draft-bi-savi-stateless-00
Thank You!
Q & A