SIP CLF Problem Statement
draft-ietf-sipclf-problem-statement-01

Vijay K. Gurbani
IETF 77, Anaheim, CA
March 26, 2010
Changes since -00

- Review by John Elwell (thanks; not all comments incorporated yet.)
- Review by Cullen Jennings (thanks; not all comments incorporated yet.)
- Text on differentiating SIPCLF from CDRs.
- Addition of a “Data Model” section that describes the required SIP headers.
- These are ...
The Data Model

- Timestamp
- Source-IP:port
- Dest-IP:port
- Server-txn
- Client-txn
- From
- To
- Method
- Call-ID
- Cseq (number)
- R-URI
- Status
- Body
- Ordered list of other SIP fields
The Data Model

- The data model applies to all SIP entities:
 - UAC
 - UAS
 - Proxy
 - B2BUA (degenerate case of a Proxy)
 - Registrar/Redirect servers (special cases of UAS)
Data Model

• UAC (using minimum data model elements)

 Request: Timestamp Method R-URI Dest-IP:port Client-txn To From Call-ID CSeq

 Response: Timestamp Source-IP:port Status Client-txn To
Data Model

- UAS (using minimum data model elements)

 Request: Timestamp Method R-URI Source-IP:port Server-Txn To From Call-ID Cseq

 Response: Timestamp Dest-IP:port Status Server-Txn
Data Model

• Proxy (using minimum data model elements)
 (a) **Incoming** request from UAC
 Timestamp Method R-URI Source-IP:port
 Server-Txn To From Call-ID Cseq
 (b) **Sending** response to UAC
 Timestamp Dest-IP:port Status Server-Txn
 Client-txn To

 Note: Client-Txn and To may be null since no downstream identifier has been initiated yet.
Data Model

• Proxy (continued)

(c) **Sending** request to downstream UAS
Timestamp Method R-URI Dest-IP:port Server-Txn Client-txn To From Call-ID CSeq

(d) **Incoming** response from downstream UAS
Timestamp Source-IP:port Status Server-Txn Client-txn To
Back of the envelope calculations

Data model element sizes (reasonable size, in bytes)

- Timestamp (16)
- Source-IP:port (21)
- Dest-IP:port (21)
- Server-txn (80)
- Client-txn (80)
- From (80)

- To (80)
- Method (10)
- Call-ID (80)
- Cseq (10)
- R-URI (80)
- Status (3)
Back of the envelope calculations

Sample call flow

Figure 1: Simple proxy scenario
Figure 2: Complex proxy forking scenario (only 2 forks)
Assume no R-R, only session initiation
Back of the envelope calculations

Message generation rate

- Steady state: 300 – 1,000 INVITEs/second.
- Scenario 1: 8 messages given no retx, limited 1xx responses, no fork, no R-R.
- Scenario 2: 16 messages given no retx, limited 1xx responses, fork to 2 endpoints only, no R-R.
- CLF message generation rate (to a disk file, syslog, IPFIX, whatever):
 - Low: 2,400 messages/sec
 - High: 16,000 messages/sec
- If proxy forks to 3 endpoints: 23,000 messages/sec!
Back of the envelope calculations

CLF message bit rate

- Using Scenario 2 (the more complex of the two) for 1,000 INVITEs/sec:
 - $\sum_{i=1}^{16} len(msg_i) = 5,685 \text{ bytes} = 45,480 \text{ bits/INVITE}$
 - 300 INVITEs/sec = 13.64 mbps
 - 1,000 INVITEs/sec = 45.48 mbps