
1

Using TCP Selective Acknowledgement (SACK)
Information to Determine Duplicate Acknowledgements

for Loss Recovery Initiation

<draft-ietf-tcpm-sack-recovery-entry-01>

Ilpo Järvinen
Markku Kojo

IETF-77, Anaheim March 23, 2010

2

An Alternative Algorithm to Trigger Fast Retransmit

• Use SACK information to determine the out-of-order segments
successfully arrived at the receiver, instead of simply counting
dupACKs

• More timely triggering of Fast Retransmit in case of
• ACK losses
• ACK reordering
• Delayed ACKs are in use (tend to conceal the first dupACK)

• Reduces the risk of false Fast Retransmits due to
• Segment duplication
• Out-of-window segments

• Also allows Limited Transmit for each full segment that has left
the network
• keeps ACK clock running more accurately

3

Current Progress

• Changes from draft-jarvinen-tcpm-sack-recovery-entry-01
• Added resetting dupack counter as Step 3 of the algorithm
• Added discussion on how adapted dupack counter is managed vs.

traditional dupack counter
• Completed security considerations by adding discussion on SACK

splitting attacks
• Clarifications based on feedback and general editing

• Changes from draft-ietf-tcpm-sack-recovery-entry-00
• Redefined IsLost() to be less stricter

• Now requires > SMSS * (DupThresh – 1) to be SACKed
• Original IsLost() of RFC 3517 requires at least DupThresh * SMSS

octets to be SACKed
• Explicitly mention setting RecoveryPoint when entering recovery
• Improved examples and general editing

4

Next Steps

• Document basically ready
• Currently planning to merge this document together with an

update of RFC 3517

THANK YOU!

5

Backup Slides

6

7

Background

• Like with RFC 2581 (and bis), entry to recovery in RFC 3517 is
based on duplicate ACKs

• SACK blocks provide more redundancy for the purpose of
determining how much have been received than dupACK counter

• SACK based methods are mentioned here and there briefly
• E.g., ackcc I-D
• But not specified anywhere

• This I-D borrows from
• RFC 3517
• Linux TCP implementation
• Forward Acknowledgment (FACK)

• FACK different in how "holes" are counted

8

The Algorithm
Upon the receipt of an ACK containing SACK information:
1. If not in loss recovery, goto Step 2. Else, continue the ongoing loss recovery
2. Update scoreboard via Update () [RFC3517]
3. If ACK is cumulative ACK, reset dupACK counter
4. If new in-window SACK information arrived, count ACK as dupACK
5. If IsLost(SND.UNA) == FALSE AND less than DupThresh dupACKs arrived

5A. Invoke optional Limited Transmit:
Run SetPipe ()
If cwnd – Pipe >= 1 SMSS

If unsent data available AND rwnd allows
Transmit as many MSS-sized segments of previously unsent data
as allowed by cwnd and Pipe

Else
5B. Invoke Fast Retransmit and Fast Recovery

• Continue as specified in Fast Rexmit & Fast Recovery Algorithm, e.g., RFC 3517

9

Potential Issues

1. One of the SACKed segments is small
• A variant of the next case but can happen also with Nagle (thus more significant)
• Solution: modified IsLost() in Step 5 of the algorithm to take care of this case by requiring that

more than SMSS * (DupThresh – 1) to be SACKed, instead of the original requirement of
having DupThresh*SMSS octets to be SACKed
• Robust against ACK losses
• Not problem, if the sender is packet boundary aware

2. A TCP sender sending small segments (Nagle disabled)
• IsLost (SND.UNA) in Step 5 may fail to detect the need for loss recovery in time (on 3rd

dupack) as not enough (DupThresh*SMSS + 1) octets have been SACKed
• Packet boundary aware calculation in IsLost() calculation is immune

• Solved by addition of Steps 3&4 and the latter condition of Step 5
• Effectively a fallback to an adapted dupACK based algorithm

3. SACK capability misbehavior - negotiates SACK but does not send them
• Requires RTO (No problem as SACK-based loss recovery won’t work either)

4. Non-compatibility with non-SACK based Loss Recovery
• SHOULD not be used with non-SACK based fast recovery (e.g., NewReno) as such algorithm

will count late dupACKs during fast recovery as extra

