

Network Virtualization within the 4WARD Project

Roland Bless, KIT roland.bless@kit.edu for the Work Package 3 – ,VNet' of 4WARD

http://www.4ward-project.eu

Current Status

- Created an architectural framework for network virtualization in a commercial setting
- Project ends in mid of this year (2010)
- Implementation and evaluation of several feasibility tests for parts of the architecture (ongoing)

2010/03/23

(non-exhaustive) List of research topics

Architectural framework for network virtualisation

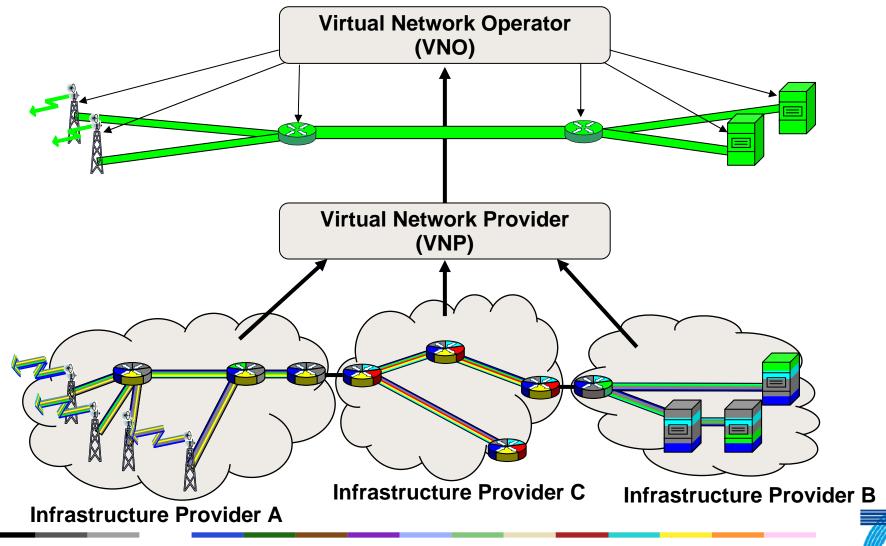
Definition of a basic architecture model

Virtualisation of resources

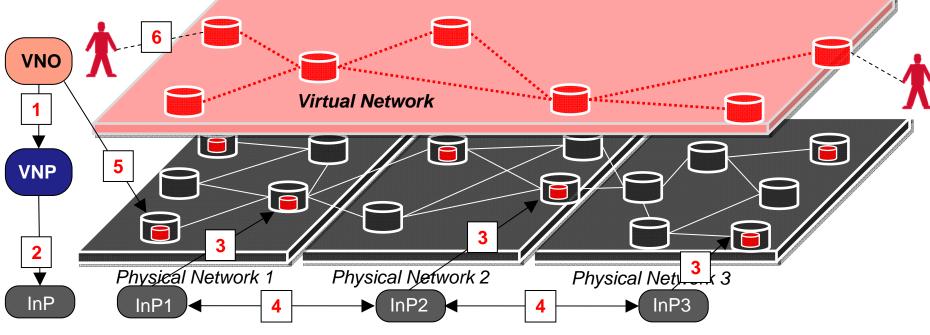
- Link virtualisation (wired, wireless)
- Node virtualisation

Provisioning, management and control

- Signaling and management protocols
- · Description of virtual networks and resources
- Embedding of virtual resources; resource optimization
- · Management of resources and isolation of virtual networks

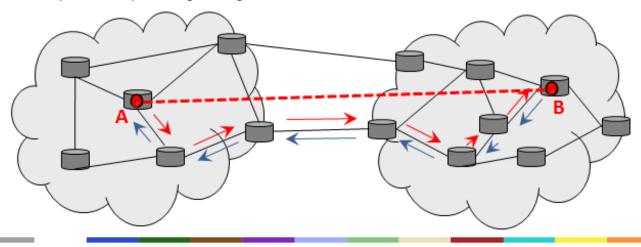

Interoperability

- Interoperability between stakeholders
- Interoperability between virtual networks (folding points)



4WARD Network Virtualization business model

Architecture interfaces



1	VNO/VNP	Virtual network description and request
2	VNP/InP	Request and negotiation of virtual resources
3	InP/Network elements	Setup of virtual nodes and virtual links
4	InP/InP (+VNP)	Setup of inter-domain virtual links and virtual networks
5	VNO/InP	"Out of band" virtual node access for bootstrapping/rebooting/configuration
6	End user/VNO	End user attachment

Virtual Link Setup

- Two variants: intra-domain and inter-domain
 - Intra-domain:
 - Basically an extension of Constraint-Based Routing for Traffic Engineering?
 - Inter-domain:
 - Standardization is required to enable interoperability between different InP domains
 - Currently, a prototype uses an additional object for QoS NSLP
 - path-coupled signaling for QoS reservation combined with virtual link setup

Topics for discussion/standardization (1)

- Common network virtualization framework
 - Terminology, definition of reference points, interfaces
- Namespaces
 - Globally unique VNet IDs (e.g. for end user attachment to VNets) represent a global namespace that needs to be standardized
- Resource Description Language
 - Describing networks and network resources is essential for provisioning and management of virtual networks (VNPs to specify resources to be requested from InPs; InPs to describe resources provided to VNPs).
- VNet Resource Request Protocol
 2
 - required for VNP to InP interaction
 - InP doesn't want to publish too much of its internals

Topics for discussion/standardization (2)

- Virtual Node Setup Protocol 3
 - To setup the virtual nodes that make up virtual networks running inside a single infrastructure domain; required for vendor interoperability.
- Virtual Link Setup/Management
 4
 - Inter-domain virtual links setup required
 - Inter-AS MPLS-VPNs are considered in RFC4364, Section 10
 - But this is limited to the MPLS-VPN model
 - a new approach for the control plane (virtual link setup) is required
 - monitoring capabilities/debugging support
- Cross InP Virtual Network Management
 5
 - need to locate virtual resources (VNO)
 - probably distributed management architecture
- End-user attachment 6
 - users must find their Virtual Access Node
 - users/apps must attach to the correct VNet (in case of multiple VNets)