
dispatch J.R. Rosenberg
Internet-Draft jdrosen.net
Intended status: Standards Track C. Jennings
Expires: April 28, 2011 Cisco
 M. Petit-Huguenin
 Stonyfish
 October 25, 2010

Verification Involving PSTN Reachability: The ViPR Access Protocol (VAP)
 draft-rosenberg-dispatch-vipr-vap-03

Abstract

 Verification Involving PSTN Reachability (ViPR) is a technique for
 inter-domain SIP federation. ViPR hybridizes the PSTN, P2P networks,
 and SIP, and in doing so, addresses the phone number routing and VoIP
 spam problems that have been a barrier to federation. The ViPR
 architecture uses a server, the ViPR server, which performs P2P and
 validation services on behalf of call agents, which acts as clients
 to the server. Such an architecture requires a client/server
 protocol between call agents and the ViPR server. That protocol,
 defined here, is called the ViPR Access Protocol (VAP).

Legal

 This documents and the information contained therein are provided on
 an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE
 IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL
 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
 WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE
 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
 FOR A PARTICULAR PURPOSE.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference

Rosenberg, et al. Expires April 28, 2011 [Page 1]

Internet-Draft ViPR Access Protocol October 2010

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 28, 2011.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Rosenberg, et al. Expires April 28, 2011 [Page 2]

Internet-Draft ViPR Access Protocol October 2010

Table of Contents

 1. Introduction to ViPR . 5
 2. Overview of VAP . 5
 3. Terminology . 7
 4. VAP Message Structure . 8
 5. VAP Transactions . 10
 5.1. Transport and Connection Management 11
 5.2. Requestor Procedures 11
 5.2.1. Generating Requests 12
 5.2.2. Receiving Responses 12
 5.3. Responder Behaviors 13
 5.3.1. Receiving Requests 13
 5.3.2. Sending Responses 14
 6. State Model . 14
 7. Protocol Versioning . 17
 8. ViPR Client Procedures . 18
 8.1. Discovery . 18
 8.2. Registration . 18
 8.3. Unregistering . 20
 8.4. Publishing Services 20
 8.4.1. VService . 21
 8.4.2. ViPR Number Service 23
 8.5. Updating the VService 24
 8.6. Uploading VCRs . 25
 8.7. Subscribing to Number Service 25
 8.8. Unsubscribing to Services 26
 8.9. Receiving Notify . 27
 8.10. Receiving PublishRevoke 27
 9. ViPR Server Procedures . 27
 9.1. Connection Establishment 28
 9.2. Registration . 28
 9.3. Unregistration . 29
 9.4. Publication . 29
 9.4.1. VService . 29
 9.4.2. ViPR Number Service 31
 9.5. Unpublish . 33
 9.6. Subscribe . 33
 9.7. Unsubscribe . 34
 9.8. UploadVCR . 34
 9.8.1. Originating . 35
 9.8.2. Terminating . 36
 9.9. Sending Notify . 36
 9.10. Sending PublishRevoke 37
 10. Syntax Details . 37
 10.1. XML Schema for VService 37
 10.2. XML Schema for ValInfo 39
 10.3. VAP Attributes . 39

Rosenberg, et al. Expires April 28, 2011 [Page 3]

Internet-Draft ViPR Access Protocol October 2010

 10.3.1. USERNAME . 40
 10.3.2. REALM . 40
 10.3.3. MESSAGE-INTEGRITY 41
 10.3.4. ERROR-CODE . 41
 10.3.5. Client-Name . 43
 10.3.6. Client-Handle . 43
 10.3.7. Protocol-Version 43
 10.3.8. Client-Label . 43
 10.3.9. Keepalive . 44
 10.3.10. ServiceIdentity 44
 10.3.11. ServiceVersion 44
 10.3.12. ServiceContent 44
 10.3.13. SubscriptionID 45
 10.3.14. CallDirection . 45
 10.3.15. StartTime . 45
 10.3.16. StopTime Attribute 45
 10.3.17. CallingNum Attribute 45
 10.3.18. CalledNum Attribute 46
 10.3.19. Quota Attribute 46
 10.3.20. DHTLifetime Attribute 47
 11. Security Considerations 47
 11.1. Outsider Attacks . 47
 11.2. Insider Attacks . 47
 12. IANA Considerations . 47
 13. References . 47
 13.1. Normative References 47
 13.2. Informative References 48
 Appendix A. Release notes . 48
 A.1. Modifications between rosenberg-03 and rosenberg-02 . . . 48
 Authors’ Addresses . 49

Rosenberg, et al. Expires April 28, 2011 [Page 4]

Internet-Draft ViPR Access Protocol October 2010

1. Introduction to ViPR

 [VIPR-OVERVIEW] introduces a new technology, called Verification
 Involving PSTN Reachability (ViPR), which enables VoIP federation
 between domains, over the Internet. ViPR is a hybrid technology that
 combines together the PSTN, P2P networks, and SIP. In doing so, it
 addresses the phone number routing problem and anti-spam problems
 that have been the most significant barriers to widespread deployment
 of SIP inter-domain federation.

 It is assumed that readers of this document have read and understood
 [VIPR-OVERVIEW].

 One of the key protocols used in ViPR is the ViPR Access Protocol
 (VAP). VAP connects call agents, such as phones, SBCs and IP PBXs,
 to a ViPR server. This document defines the VAP protocol in detail.

2. Overview of VAP

 A high level view on the ViPR architecture is shown in Figure 1.
 This architecture is discussed in more detail in [VIPR-OVERVIEW].

Rosenberg, et al. Expires April 28, 2011 [Page 5]

Internet-Draft ViPR Access Protocol October 2010

 +-+ +-+
 | | | | +------+
 | | +-----| |---|Enroll|
 | | | | | +------+
 |I| | |I|
 |n| +-----+ |n|
 VAP |t| | ViPR| |t|
 +----------|r|---|Srvr |--|e|-----------------
 | |a| | | |r| P2P-Validation
 | |n| +-----+ |n|
 | |e| |e|
 | |t| |t|
 +-----+ SIP | | +-----+ | |
 | CA |-------|F|---| |--|F| ---------------
 +-----+ |i| | | |i| SIP/TLS
 . |r| | . | |r|
 SIP/ . |e| | | |e|
 MGCP/ . |w| | BE | |w|
 TDM . |a| | | |a|
 . |l| | | |l|
 +-----+ |l| | | |l|
 | UA |-------| |---| |--| |-----------------
 +-----+ | | +-----+ | | SRTP
 | | | |
 +-+ +-+
 | |
 +--------------------+-----------------+
 |
 Single administrative domain

 Figure 1: Architecture

 A key component of this architecture is the ViPR server. The ViPR
 server is responsible for connecting to the P2P network, publishing
 phone numbers into that network, performing validation, and learning
 new routes. The ViPR server performs those functions on behalf of
 one or more call agents. This requires a protocol to run between the
 call agents and the ViPR server. This protocol is called VAP - the
 ViPR Access Protocol.

 VAP is a client-server protocol that runs between the call agent and
 the ViPR server. VAP is a simple, binary based, request/response
 protocol. It utilizes the same syntactic structure and transaction
 state machinery as STUN [RFC5389], but otherwise is totally distinct
 from it. VAP clients initiate TCP/TLS connections towards the ViPR
 server. The ViPR server never opens connections towards the call
 agent. This allows the ViPR servers to run on the public side of
 NATs and firewalls.

Rosenberg, et al. Expires April 28, 2011 [Page 6]

Internet-Draft ViPR Access Protocol October 2010

 Once the connections are established, the call agent sends a Register
 message to the ViPR server. This register message primarily provides
 authentication and connects the client to the ViPR server. VAP
 provides several messages for different purposes:
 o Publish: The Publish message informs the ViPR server of service
 information. There are two types of Publishes supported in ViPR.
 The first is the ViPR Service (VService). This informs the ViPR
 server of the SIP URIs on the call agent and black and white lists
 used by the ViPR server to block validations. The ViPR server
 stores that information locally and uses it during the validation
 process, as described above. The second Publish is the ViPR
 Number Service. The ViPR server, upon receiving this message,
 performs a Store operation into the DHT.
 o UploadVCR: This message comes in two flavors - an originating and
 terminating message. An originating UploadVCR comes from a call
 agent upon completion of a non-ViPR call to the PSTN. A
 terminating UploadVCR comes from an agent upon completion of a
 call received FROM the PSTN. The ViPR server behavior for both
 messages is very different. For originating UploadVCR, the ViPR
 server will store these, and at a random time later, query the DHT
 for the called number and attempt validation against the ViPR
 servers that are found. For a terminating UploadVCR, the ViPR
 server will store these, awaiting receipt of a validation against
 them.
 o Subscribe: Call agents can subscribe for information from the
 ViPR server. There is one service that call agent can subscribe
 for: Number Service. When a new number is validated, the ViPR
 server will send a Notify to the call agent, containing the
 validated number, the ticket, and a set of SIP trunk URIs.
 o Notify: The ViPR server sends this message to the call agent when
 it has an event to report for a particular subscription.

 The VAP protocol provides authentication by including an integrity
 object in each message. This integrity message is the hash of the
 contents of the message and a shared secret between the ViPR server
 and the client. VAP can also be run over TLS, which enhances
 security further.

3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Rosenberg, et al. Expires April 28, 2011 [Page 7]

Internet-Draft ViPR Access Protocol October 2010

4. VAP Message Structure

 VAP messages follow the syntax and structure of Session Traversal
 Utilities for NAT (STUN) [RFC5389]. It also shares the same
 transaction model as STUN. However, aside from its common syntax and
 transaction model, STUN and VAP are unrelated.

 VAP messages are encoded in binary using network-oriented format
 (most significant byte or octet first, also commonly known as big-
 endian). The transmission order is described in detail in Appendix B
 of RFC791 [RFC0791]. Unless otherwise noted, numeric constants are
 in decimal (base 10).

 All VAP messages MUST start with a 20-byte header followed by zero or
 more Attributes. The VAP header contains a VAP message type, message
 length, magic cookie and transaction ID.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0 0| VAP Message Type | Message Length |
 +-+
 | Magic Cookie |
 +-+
 | |
 | Transaction ID (96 bits) |
 | |
 +-+

 Figure 2: Format of VAP Message Header

 The most significant two bits of every VAP message MUST be zeroes.

 The message type defines the message class (request, success
 response, failure response) and the message method (the primary
 function) of the VAP message. Although there are four message
 classes, there is only one type of transaction in VAP: request/
 response transactions (which consist of a request message and a
 response message). Response classes are split into error and success
 responses to aid in quickly processing the VAP message.

Rosenberg, et al. Expires April 28, 2011 [Page 8]

Internet-Draft ViPR Access Protocol October 2010

 The message type field is decomposed further into the following
 structure:

 0 1
 2 3 4 5 6 7 8 9 0 1 2 3 4 5

 +--+--+-+-+-+-+-+-+-+-+-+-+-+-+
 |M |M |M|M|M|C|M|M|M|C|M|M|M|M|
 |11|10|9|8|7|1|6|5|4|0|3|2|1|0|
 +--+--+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 3: Format of VAP Message Type Field

 Here the bits in the message type field are shown as most-significant
 (M11) through least-significant (M0). M11 through M0 represent a 12-
 bit encoding of the method. C1 and C0 represent a 2 bit encoding of
 the class. A class of 0b00 is a Request, a class of 0b10 is a
 success response, and a class of 0b11 is an error response. The
 method and class are orthogonal, so that for each method, a request,
 success response, error response and indication are defined for that
 method.

 The magic cookie field MUST contain the fixed value 0x41666679 in
 network byte order (note that this is a different value than STUN).

 The transaction ID is a 96 bit identifier, used to uniquely identify
 VAP transactions. For request/response transactions, the transaction
 ID is chosen by the VAP client for the request and echoed by the
 server in the response. The transaction ID MUST be uniformly and
 randomly chosen from the interval 0 .. 2**96-1, and SHOULD be
 cryptographically random. The client MUST choose a new transaction
 ID for new transactions. Success and error responses MUST carry the
 same transaction ID as their corresponding request.

 The message length MUST contain the size, in bytes, of the message
 not including the 20 byte VAP header. Since all VAP attributes are
 padded to a multiple of four bytes, the last two bits of this field
 are always zero.

 Following the VAP fixed portion of the header are zero or more
 attributes. Each attribute is TLV (type-length-value) encoded. The
 details of the attributes themselves is given in Section 10.3.

 The methods defined in VAP, and their corresponding method values,
 are:

Rosenberg, et al. Expires April 28, 2011 [Page 9]

Internet-Draft ViPR Access Protocol October 2010

 Method Value
 ------ ------
 Register 0x001
 Unregister 0x002
 Publish 0x004
 Unpublish 0x005
 PublishRevoke 0x006
 Subscribe 0x007
 Unsubscribe 0x008
 Notify 0x00a
 UploadVCR 0x00b

 Figure 4: VAP Methods

 After the VAP header are zero or more attributes. Each attribute is
 TLV encoded, with a 16 bit type, 16 bit length, and variable value.
 Each attribute MUST end on a 32 bit boundary:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Value |
 +-+

 Figure 5: VAP Attributes

 The Length refers to the length of the actual useful content of the
 Value portion of the attribute, measured in bytes. Since VAP aligns
 attributes on 32 bit boundaries, attributes whose content is not a
 multiple of 4 bytes are padded with 1, 2 or 3 bytes of padding so
 that they are a multiple of 4 bytes. Such padding is only needed
 with attributes that take freeform strings, such as USERNAME. For
 attributes that contain more structured data, the attributes are
 constructed to align on 32 bit boundaries. The value in the Length
 field refers to the length of the Value part of the attribute prior
 to padding - i.e., the useful content. Consequently, when parsing
 messages, implementations will need to round up the Length field to
 the nearest multiple of four in order to find the start of the next
 attribute.

5. VAP Transactions

 This section describes the general behavior of VAP transactions,
 regardless of the method.

Rosenberg, et al. Expires April 28, 2011 [Page 10]

Internet-Draft ViPR Access Protocol October 2010

5.1. Transport and Connection Management

 VAP runs only over TCP. UDP is not supported. As a consequence,
 transactions are simple. For each transaction, the client sends a
 single request, and the server sends a response.

 VAP can also be run over TLS. The server MUST implement TLS, and the
 client SHOULD utilize it. The TLS_RSA_WITH_AES_128_CBC_SHA
 ciphersuite MUST be implemented. The client MUST verify that the
 server certificate matches a configured value associated with the
 ViPR server that is to be used. The server MUST accept any
 certificate from the client. Client authentication is performed
 using a simple digest technique.

 Reliability of VAP over TCP and TLS-over-TCP is handled by TCP
 itself, and there are no retransmissions at the VAP protocol level.
 However, for a request/response transaction, if the client has not
 received a response by Ti seconds after it sent the SYN to establish
 the connection, it considers the transaction to have timed out. Ti
 SHOULD be configurable and SHOULD have a default of 39.5s.

 In addition, if the client is unable to establish the TCP connection,
 or the TCP connection is reset or fails before a response is
 received, any request/response transaction in progress is considered
 to have failed.

 The client MAY send multiple transactions over a single TCP (or TLS-
 over-TCP) connection, and it MAY send another request before
 receiving a response to the previous. The client SHOULD keep the
 connection open until it
 o has no further VAP requests to send over that connection, and;
 o has no outstanding subscriptions

 At the server end, the server SHOULD keep the connection open, and
 let the client close it, unless the server has determined that the
 connection has timed out (for example, due to the client
 disconnecting from the network). The server SHOULD NOT close a
 connection if a request was received over that connection for which a
 response was not sent. A server MUST NOT ever open a connection back
 towards the client in order to send a response. Servers SHOULD
 follow best practices regarding connection management in cases of
 overload.

5.2. Requestor Procedures

 Though VAP is a client/server protocol, the ViPR server can
 asynchronously send requests towards the client call agent. As such,
 this section defines transaction rules in terms of the requestor (the

Rosenberg, et al. Expires April 28, 2011 [Page 11]

Internet-Draft ViPR Access Protocol October 2010

 entity sending the request) and the responder (the entity receiving
 the request).

5.2.1. Generating Requests

 The requestor MUST construct a request message based on the syntax in
 Section 4. The message class MUST be a request. The method depends
 on the method of the request.

 The requestor MUST add a MESSAGE-INTEGRITY, REALM and USERNAME
 attribute to the request message. The USERNAME contains a string
 which is the provisioned username identifying the client to the VAP
 server. The REALM attribute MUST have the value of "ViPR". The
 MESSAGE-INTEGRITY is computed as described in Section 10.3.3. That
 computation relies on a 16-byte key. The 16-byte key for MESSAGE-
 INTEGRITY HMAC is formed by taking the MD5 hash of the result of
 concatenating the following five fields: (1) The username, with any
 quotes and trailing nulls removed, (2) A single colon, (3) The realm,
 with any quotes and trailing nulls removed, (4) A single colon, and
 (5) The password, with any trailing nulls removed. Note that the
 password itself never appears in the message.

 This format for the key was chosen so as to enable a common
 authentication database for SIP, which uses digest authentication as
 defined in RFC 2617 [RFC2617].

 The request will contain other attributes depending on the method.

5.2.2. Receiving Responses

 All responses MUST first be authenticated by the requestor.
 Authentication is performed by first comparing the Transaction ID of
 the response to an outstanding request. If there is no match, the
 requestor MUST discard the response. Then the requestor SHOULD check
 the response for a MESSAGE-INTEGRITY attribute. If not present, it
 MUST discard the response, except for error responses with response
 codes 431 and 436. If MESSAGE-INTEGRITY is present, the requestor
 computes the HMAC over the response. The key that is used MUST be
 same as used to compute the MESSAGE-INTEGRITY attribute in the
 request.

 If the computed HMAC matches the one from the response, processing
 continues. If the response was discarded, in cases where the failure
 is due to an implementation error, this will cause timeout of the
 transaction.

 If the response is an Error Response, the requestor checks the
 response code from the ERROR-CODE attribute of the response. For a

Rosenberg, et al. Expires April 28, 2011 [Page 12]

Internet-Draft ViPR Access Protocol October 2010

 400 (Bad Request) response code, the requestor SHOULD generate an
 alarm (a notification here refers to some kind of indication, sent to
 the administrator of the system, indicating an error condition.
 Notification mechanisms include SNMP alarms, logs, syslog, and so on,
 and are a matter of local implementation) containing the reason
 phrase.

 For a 431 (Integrity Check Failure) response code, this is typically
 caused by a mis-provisioning of the password. The requestor SHOULD
 generate an alarm and SHOULD NOT retry.

 If the requestor receives a 436 (Unknown Username) response, it means
 that the username it provided in the request is unknown. This is
 typically due to a provisioning error, a consequence of a mismatched
 username. The requestor SHOULD generate an alarm.

 The requestor MUST ignore any attributes from the response whose
 attribute type were not understood by the requestor.

5.3. Responder Behaviors

5.3.1. Receiving Requests

 A responder will receive requests on an existing TCP connection,
 either one initiated by the client, or the one accepted by the ViPR
 server.

 If a responder cannot process a request because the request does not
 meet the syntactic requirements necessary for the processing
 described below, the responder SHOULD reject the request with an
 error response and include an ERROR-CODE attribute with a response
 code of 400 (Bad Request). If the request is so malformed that a
 response cannot be generated, the request is just dropped. Error
 codes for specific failures are not provided, since these failures
 would not be seen in a functionally correct system. The protocol
 only provides error codes for errors that can arise due to
 misconfiguration or network error. Note, however, that a responder
 SHOULD NOT verify that a requestor has generated the request in full
 compliance to this specification; it should only validate what it
 needs to perform the processing described for handling the request.

 First, the responder authenticates the request. The request will
 contain a USERNAME, REALM, and MESSAGE-INTEGRITY attribute. If the
 USERNAME is unknown, the responder generates an error response with
 an ERROR-CODE attribute with a response code of 436 (Unknown
 Username). The response MUST include the REALM, but MUST omit the
 MESSAGE-INTEGRITY attribute.

Rosenberg, et al. Expires April 28, 2011 [Page 13]

Internet-Draft ViPR Access Protocol October 2010

 The responder computes the HMAC over the request. If the computed
 HMAC differs from the one from the MESSAGE-INTEGRITY attribute in the
 request, the responder MUST generate an error response with an ERROR-
 CODE attribute with a response code of 431 (Integrity Check Failure).
 This response MUST include a REALM but MUST omit the MESSAGE-
 INTEGRITY attribute.

 The responder MUST ignore any attributes from the request whose
 attribute type were not understood by the responder.

5.3.2. Sending Responses

 To construct the response the responder follows the message structure
 described in Section 4. The message type MUST indicate either a
 success response or error response class and MUST indicate the same
 method as the request. The responder MUST copy the transaction ID
 from the request to the response.

 The attributes that get added to the response depend on the type of
 response.

 When sending an error response, the server MUST add an ERROR-CODE
 attribute containing the error code. The reason phrase is not fixed,
 but SHOULD be something suitable for the error code.

 All responses except for an error response with ERROR-CODE of 431 and
 436 will contain a MESSAGE-INTEGRITY attribute. All responses will
 contain a REALM attribute. The computation of the message integrity
 is based on the same username value present in the request (along
 with its corresponding password); however the response SHOULD NOT
 contain the USERNAME attribute.

 All responses MUST be sent on the same TCP connection on which the
 request was received. If this connection has closed, the responder
 MUST NOT open a new connection in order to try to send the response.
 The transaction is considered failed in this case.

6. State Model

 The state model for VAP is shown in Figure Figure 6. This state is
 built up as a consequence of the primary messages which build state
 on the ViPR server: Register, Publish, UploadVCR and Subscribe.

Rosenberg, et al. Expires April 28, 2011 [Page 14]

Internet-Draft ViPR Access Protocol October 2010

 +-------+
 |Handle |
 +-------+
 ^1 1 +----+
 |1 +-------->|DHT |
 +-------+ n+--------+ n | +----+
 |Client |<-------|Instance|<------+ |
 +-------+ +--------+ | | 1 +----------+
 | | | | +------>|BlackWhite|
 | | | | | +----------+
 Vn | +-------------+
 +------------+ | | | 1 +---------+
 |Subscription| V | VService |---->|NumCount |
 +------------+ +-----+ +-------------+ +---------+
 |route| |1 |
 +-----+ | | 1 +--------+
 | +------->|domain |
 |1 +--------+
 +----------+
 |VServiceID|
 +----------+
 |1 |1
 | |
 Vn Vn
 +--------+ +--------+
 |OrigVCR | |TermVCR |
 +--------+ +--------+

 Figure 6: VAP State Model

 It is important to understand that the ViPR client publishes two
 unique sets of information to the ViPR server:

 1. The set of numbers that are reachable by the client through a
 particular ViPR service,

 2. The set of ViPR services

 Both of these are uploaded from the client to the ViPR server using a
 VAP Publish operation. The ViPR clients have the concept of a "ViPR
 Service" (not to be confused with ViPR server). A ViPR service is a
 unique instance of ViPR processing in a call agent - and is
 associated with a specific DHT, specific routes, specific domain,
 specific set of numbers to use, and specific set of policies
 governing operation. When a client publishes a number, it is always
 associated with a specific ViPR service, or VService. Multiple
 clients can publish the same VServices, and they will differ only in

Rosenberg, et al. Expires April 28, 2011 [Page 15]

Internet-Draft ViPR Access Protocol October 2010

 the routes associated with that VService, as each client will have
 its own route to reach the same VService.

 The ViPR server actively tracks the association of clients,
 VServices, routes, DHTs, BlackWhite lists, and VServiceIDs. Number
 publications and VService publications are differentiated from each
 other by different serviceID values in attributes in the Publish
 request. To be thoroughly confusing, this serviceID is not the same
 as a VServiceID. ServiceID refers to whether something is a VService
 publication or number publication, and is an enumerated value,
 whereas a VServiceID is an instance ID for a particular VService.
 The ViPR server only actually stores the VService publications; when
 receiving a Publish for a number service, the corresponding data is
 written directly to the DHT and then forgotten by the ViPR server.
 The ViPR server doesn’t take any responsibility for removing the
 state or for keeping it fresh. All of this is the responsibility of
 the ViPR client. Consequently, VAP itself is not responsible for
 maintaining this information.

 Firstly, when a client connects, it will Register to the ViPR server.
 That creates an instance of the client object, which is assigned a
 unique handle that identifies it. The client object is one of the
 key pieces of state (ViPR service being the other). All subsequent
 messaging from the client includes that Client-Handle, allowing the
 ViPR server to immediately determine the client associated with the
 messaging.

 The client can issue subscriptions for services over its connection
 to the ViPR server. The ViPR server remembers the set of
 subscriptions from that client.

 The VService publication builds the next large block of state. When
 a VService publication is received from a client, the ViPR server
 creates the VService object if it didn’t have one yet for that
 VServiceID. Each distinct instance of a VService publication gets
 linked to it, and each distinct instance is, in turn, associated with
 one or more routes. Each route has a SIP URI, but the internal
 structure of the route is opaque to the ViPR server. It parses no
 deeper than the route element itself; the contents are not parsed,
 examined or checked by the ViPR server. This allows for future
 extensibility on how call routing is done. The VService itself has a
 numberCount, domain, BlackWhite list and DHT, all of which are
 learned from the VService publication. The VServiceID is 1-1
 associated with each VService.

 Finally, each UploadVCR, whether it is originating or terminating,
 contains a VServiceID as well. This binds it to a particular
 VService. It is important to note that, the linkage from VCRs to

Rosenberg, et al. Expires April 28, 2011 [Page 16]

Internet-Draft ViPR Access Protocol October 2010

 VServices is indirect, through the VServiceID. This allows a
 temporary outage to break all client connections, which will delete
 the VService objects, but keep the VCRs and the VServiceIDs. When
 the clients reconnect, the VServices are rebuilt, along with their
 IDs, and once again can be linked to the VCRs.

 When the VAP connection terminates, the client object and
 subscription state from the corresponding client is destroyed. Any
 instances of a VService from that client are destroyed. If there are
 no longer any instances of the VService left, the VService itself is
 destroyed. The VCRs are not affected by the termination of a
 connection from a client.

 When the client TCP connection breaks or keepalives cease to be sent,
 the ViPR server will remove the registration, subscription and
 VServiceID to SIP trunk/DHT mappings. Similarly, on the client side,
 if the TCP connection breaks, the client must create a new TCP
 connection, register without a handle, subscribe and performs its
 VService publications.

 The VAP state above is, in addition, utterly and completely
 orthogonal to the state of the DHT itself. That state is driven
 through number service publications, which cause storage operations
 into the DHT.

7. Protocol Versioning

 Each version of VAP has a major and minor version number. This
 specification describes major version 1, minor version 0. It is
 anticipated that the protocol may require updating in the future.

 If an update can be done such that an older client will work with a
 newer server, and an older server with a newer client, this MUST be
 done using an increase in the minor version number within the major
 version. This would typically include bug fixes and minor
 extensions. If a protocol change is such that it cannot be
 understood by previous servers and clients, this MUST be done using
 an increase in the major version number of the protocol.

 This specification further requires that, in addition to the most
 recent version of the protocol they understand, a client MUST
 understand the previous major version number. For example, a client
 supporting version 2.1 would also need to support version 1.0.

 The protocol version number is included in client register messages,
 and negotiation as part of that exchange.

Rosenberg, et al. Expires April 28, 2011 [Page 17]

Internet-Draft ViPR Access Protocol October 2010

 This allows for a graceful upgrade procedure. When a new version of
 the protocol is to be rolled out, the clients are upgraded first,
 each in turn. When they are upgraded, they’ll come back, but during
 registration, notices that the servers only support a previous major
 version. The clients thus switch to the previous version of the
 protocol. Once all of the clients are updated, the servers can be
 updated. When the clients connect to them, they will utilize the
 newest version of the protocol.

8. ViPR Client Procedures

8.1. Discovery

 VAP provides no discovery mechanism. The client must be provisioned
 with the domain names and/or IP addresses and ports of its ViPR
 servers. Typically, a client will be provisioned with two servers -
 a primary and a backup.

8.2. Registration

 Once a TCP connection is established, the client MUST perform a
 registration. This applies to all TCP connections held by the client
 for purposes of high availability.

 The client constructs a Register request based on the basic client
 procedures in Section 5.2. In addition, the client MUST include the
 Client-Name attribute. This field is used strictly for debugging
 purposes and indicates the name of the client to the server.

 If the client is registering for the first time towards this ViPR
 server, the registration MUST omit the Client-Handle attribute.

 If the client is registering for the first time towards this ViPR
 server (and thus there was not Client-Handle attribute), the client
 MUST include a Protocol-Version attribute in the request. This
 includes the major and minor version number of the most recent
 version of the protocol supported by the client. For purposes of
 extensibility, in addition to their current version of the client
 protocol, a client MUST support the previous major version as well.

 The client MUST include the Client-Label attribute in the request.
 However, it is not used and its contents are arbitrary.

 Once constructed, the client sends the Register request to the ViPR
 server. The response is processed using the general techniques in
 Section 5.2. Assuming a success response is ultimately received, it
 indicates that the client has successfully registered. This response

Rosenberg, et al. Expires April 28, 2011 [Page 18]

Internet-Draft ViPR Access Protocol October 2010

 will contain a Client-Handle attribute. The client MUST retain this
 handle and store it for the lifetime of the clients connection to the
 server. The response will also contain the Keepalive attribute,
 which tells the client how often it needs to keepalive its
 registration to the server.

 If the response to the initial Register request (one without a
 Client-Handle) is an error response with an ERROR-CODE attribute with
 a response code of 478, it means that the server does not support the
 major protocol version signaled by the client. The client MUST
 extract the Protocol-Version attribute from the error response. This
 attribute indicates the major and minor versions supported by the
 server. Based on the principles in Section 7, the client will be
 able to support a version of the protocol that has a major protocol
 version matching the one in the Protocol-Version attribute of the
 error response. The client MUST switch to this version of the
 protocol, and then MUST generate a new Register request (without a
 Client-Handle), indicating a Protocol-Version equal to the new, lower
 version of the protocol.

 If the response to the initial Register request (one without a
 Client-Handle) is an error response with an ERROR-CODE attribute with
 a response code of 477, it means that the server believes that the
 client has already registered on this connection. There has been a
 state synchronization error. The client SHOULD generate an alarm,
 and then tear down the TCP connection. It MUST open a new TCP
 connection, and then generate a fresh Register request (without a
 Client-Handle) over that connection.

 If the Register message was for an existing connection (and thus a
 keepalive), and thus included the Client-Handle attribute in the
 request, but the response was a Register Error response with an
 ERROR-RESPONSE with a response code of 471, the client MUST consider
 this a failure of the connection. It SHOULD attempt a new connection
 and a new Register, but without a Client-Handle.

 During an initial Register (one that omits Client-Handle), the client
 MUST NOT generate any subsequent requests until that Register
 transaction completes.

 If the TCP connection fails, the client needs to reconnect and create
 a new registration without the handle, and furthermore, resubscribe
 and republish as needed. In other words, on the client side, the
 lifetime of the handle is equal to the lifetime of the TCP
 connection. The server also holds onto the handle as long as the
 connection is active. However, it will also watch for refreshes of
 registrations, and if it doesn’t see one fast enough, remove the
 client registration, the handle, and state received from that client,

Rosenberg, et al. Expires April 28, 2011 [Page 19]

Internet-Draft ViPR Access Protocol October 2010

 as well.

8.3. Unregistering

 A Client that wishes to terminate its connection gracefully does so
 using the Unregister request. This request is first constructed as
 described in Section 5.2. Once constructed, the client MUST add the
 Client-Handle attribute to the request, and send it to the ViPR
 server.

 If the response was an error response and was of type 400, it means
 that the client did not construct the request properly. The client
 MUST NOT retry unless it changes the content or set of attributes in
 the request to match the requirements defined here.

 If the response was an error response with an ERROR-RESPONSE
 attribute with a response code of 471, the client MUST consider this
 a failure of the connection. It indicates a synchronization error
 between client and server. The client SHOULD generate an alarm.

 If the response was an error response and was of type 474, it means
 that the client sent an Unregister request on a TCP connection but
 had not yet registered. If the client had registered, there has been
 some kind of synchronization error. The client SHOULD generate an
 alarm.

 In all cases, success or error responses, the client MUST consider
 all subscriptions to this server terminated, and consider all
 published VServices to this server as unpublished. The client MUST
 terminate the TCP connection after the response has been received.

8.4. Publishing Services

 Publish requests inform the ViPR server of information from the
 client. There are two types, VService publications and number
 publications. These differ in the value of the ServiceIdentity
 attribute.

 All publications contain a ServiceContent attribute which contains an
 XML element that defines the service. The schema for the
 ServiceContent element depends on whether the publication is a
 VService or number publication.

 The Publish request MUST contain a ServiceVersion attribute. This
 attribute is a version number that increments by at least one every
 time a particular service (identified by a unique VService, instance,
 service ID and sub-service ID value) changes in any way. If the
 service data different from the previous published value, the

Rosenberg, et al. Expires April 28, 2011 [Page 20]

Internet-Draft ViPR Access Protocol October 2010

 ServiceVersion attribute MUST increase. If the service data is the
 same as the previous published value, the ServiceVersion SHOULD stay
 the same, but MAY increase. Consequently, increasing version numbers
 are not a guarantee that there was a change; only that lack of
 increasing version number is a guarantee that there was no change.

 If a client loses track of the previous version number of the service
 (due, for example, to a restart), it MUST choose a new instance ID
 and then it can reset the ServiceVersion.

 Finally, the Publish Request MUST contain a ServiceContent attribute.
 This attribute contains the actual service data. Its actual
 structure and syntax are a function of the service and sub-service.

 If the response was an error response and was of type 472, it means
 that the client didn’t increment the sequence number. More likely,
 it indicates that the client has inadvertently forgotten the version
 number of the service and gotten out of sync with the server. The
 client SHOULD choose a new instance ID for this service, withdraw the
 old one, and publish the new one.

 If the response was an error response and was of type 474, it means
 that the client sent a Publish request on a TCP connection but had
 not yet registered. If the client hadn’t registered, it MUST now do
 so. If it had registered, there has been some kind of
 synchronization error. The client SHOULD generate an alarm. Then,
 it MUST generate a new register (without the Client-Handle), flushing
 all subscriptions.

 If the response was an error response and was of type 400, it means
 that the client did not construct the request properly. The client
 MUST NOT retry unless it changes the content or set of attributes in
 the request to match the requirements defined here.

 If the response was a success, the publication has been accepted.

8.4.1. VService

 The VService indicates the critical information for the VService
 identified by the VService ID. Typically, a call agent will run on
 many servers, each of which is listening for SIP traffic on a
 specific IP address and port. Each such IP address and port forms a
 particular instance of the VService, and represents an alternative
 SIP destination for receiving incoming calls. The instance ID is a
 unique identifier, within the scope of the VServiceID, which
 identifies that call agent server.

 The additional information placed into the VService publication will

Rosenberg, et al. Expires April 28, 2011 [Page 21]

Internet-Draft ViPR Access Protocol October 2010

 not vary amongst different instances. That information is:

 o The DHT that the client wishes its numbers to be published into
 for this VService. This must always be the name of the public
 ViPR DHT, which is "Quetzalcoatl".
 o The domain name associated with this VService, e.g., example.com.
 This domain name is used by the ViPR server at the end of the
 validation process.
 o The set of routes which can be used to reach a SIP server on the
 call agent instance. Each route contains a SIP URI, in addition
 to extensions to allow for future advanced routing. This
 parameter of the VService data is instance specific.
 o a black/white list of domains. These are used by the ViPR server
 during the validation protocol. The white list contains the set
 of domains that this domain wishes to only federate with. The
 black list contains the list of domains that this domain does not
 wish to federate with.
 o A count of the number of phone numbers being published for this
 VService. This is used for quota management on the ViPR server.

 Note that the VService does not contain phone numbers. VService
 information is not stored into the DHT by the ViPR server. It is
 stored locally on the ViPR server and used to support the validation
 protocol.

 Section 10.1 defines the XML schema for the object included in the
 Publish request.

 The SIP URI is constructed as follows:

 1. The scheme MUST be sip.
 2. The user part MUST be an identifier which is unique to this agent
 and is identical for all instances of that call agent. For
 example, if a call agent consists of two servers for purposes
 availability, and either can be used, the user part will be
 identical in the SIP URI published by each server.
 3. The domain part MUST be the domain associated with this call
 agent, and MUST match certificates that the domain can obtain.
 4. There MUST be a port and it MUST be the port on which incoming
 SIP invites can be received.
 5. There MUST be an maddr URI parameter, and it MUST contain the IP
 address or hostname of the instance of the call agent server.
 6. The transport URI parameter MUST be present and MUST be TCP.

 There will be one or more URI per each instance of the call agent.
 The IP address in the URI MUST be a publicly reachable one. If the
 call agent is to be reached through a border element, the IP address
 and port on the border element MUST be used here.

Rosenberg, et al. Expires April 28, 2011 [Page 22]

Internet-Draft ViPR Access Protocol October 2010

 The use of the IP address in the maddr parameter allows the system to
 operate without DNS support.

 An example document for a VService on the public DHT is:

 <?xml version="1.0" encoding="UTF-8"?>
 <service-description
 xmlns="http://www.cisco.com/namespaces/saf-uc" id="has7gg"
 xmlns:vt="http://www.cisco.com/namespaces/viprtrunk"
 schemaVersion="1.0">
 <tns:vservice xmlns:tns="http://www.cisco.com/namespaces/viprtrunk">
 <tns:DHTname>Quetzalcoatl</tns:DHTname>
 <tns:DIDCount>3670</tns:DIDCount>
 <tns:domain>example.com</tns:domain>
 <tns:whitelist>
 <tns:domain>example.com</tns:domain>
 <tns:domain>foo.edu</tns:domain>
 </tns:whitelist>
 <tns:route>
 <tns:SIPURI>
 sip:17ahhs7zpaksux6z5==@example.com:2371;maddr=1.2.3.4;transport=tcp
 </tns:SIPURI>
 </tns:route>
 </tns:vservice>
 </service-description>

 Figure 7: Example ServiceContent

 The ViPR client SHOULD publish each ViPR trunk service to both its
 primary and backup ViPR server, for purposes of HA.

8.4.2. ViPR Number Service

 The ViPR number service is used to publish the numbers that are
 associated with the VService. It is published as a separate service
 due to the differing state requirements associated with the numbers.
 For the VService, the ViPR server stores the information and does not
 actually publish it into the DHT. For ViPR number service, the ViPR
 server immediately writes the data into the DHT and doesn’t actually
 store it locally. The ViPR server does not refresh the data in the
 DHT on its own, nor does it withdraw the data from the DHT when the
 client disconnects. The ViPR client is responsible for refreshing
 the data in the DHT by periodically refreshing each of its numbers in
 each DHT. The numbers in the DHT have a configurable expiration.
 Consequently, the ViPR client has to refresh the data prior to the
 expiration. There is no way in VAP to remove a number from the DHT;

Rosenberg, et al. Expires April 28, 2011 [Page 23]

Internet-Draft ViPR Access Protocol October 2010

 it is merely left to expire.

 The ViPR client SHOULD publish each service to both its primary and
 backup ViPR server, for purposes of HA. Next, the client constructs
 a ViPR number service advertisement. Unlike VService advertisements,
 which utilize an XML object in the ServiceContent attribute, number
 services utilize only VAP attributes. The Publish message will
 contain a ServiceIdentity attribute and a CalledNum attribute. The
 VServiceID of the ServiceIdentity attribute indicates the VService
 for this number, and is used by the ViPR server to determine which
 DHT to publish into. The CalledNum attribute contains the number to
 be published into the DHT. The ServiceVersion attribute is not
 present.

8.5. Updating the VService

 A client can change the VService information at any time. Typically,
 changes in the black or white list will require an updated VService
 publication, as will changes in the set of servers listening for
 incoming SIP traffic.

 To update a VService, the client modifies its service description,
 and creates a new Publish request. This request is first formed as
 described in Section 4. This request MUST contain the
 ServiceIdentity attribute, identifying the service to be modified.
 The request MUST also contain the ServiceContent attributes,
 containing the relevant information for the service.

 The request MUST contain a ServiceVersion attribute. That version
 number MUST be at least one higher than the version number in the
 previous publication for the same service (as identified by service
 ID, subservice ID and instance).

 If the response was an error response and was of type 472, it means
 that the client didn’t increment the sequence number. More likely,
 it indicates that the client has inadvertently forgotten the version
 number of the service and gotten out of sync with the server. The
 client SHOULD choose a new instance ID for this service, unregister,
 reconnect, re-register, and republish.

 If the response was an error response and was of type 474, it means
 that the client sent a Publish request on a TCP connection but had
 not yet registered. If the client hadn’t registered, it MUST now do
 so. If it had registered, there has been some kind of
 synchronization error. The client SHOULD generate an alarm. Then,
 it MUST generate a new register (without the Client-Handle).

 If the response was an error response and was of type 400, it means

Rosenberg, et al. Expires April 28, 2011 [Page 24]

Internet-Draft ViPR Access Protocol October 2010

 that the client did not construct the request properly. The client
 MUST NOT retry unless it changes the content or set of attributes in
 the request to match the requirements defined here.

 If a client is no longer capable of receiving SIP requests at the URI
 it previously published, it should remove its VService by sending an
 Unpublish request.

8.6. Uploading VCRs

 When the call agent initiates or receives a call that goes towards
 the PSTN, whether it be through a PSTN gateway or through a SIP trunk
 to a service provider, the call agent MUST send an UploadVCR request
 to its primary server ViPR server. It SHOULD send its terminating
 UploadVCRs to its secondary ViPR server, and SHOULD NOT send its
 originating UploadVCRs to its secondary. The UploadVCR request is
 first constructed like any other VAP request. This means it will
 contain the USERNAME, REALM, and MESSAGE-INTEGRITY attributes.

 In addition, it MUST contain a CallingNum, CalledNum, StartTime and
 StopTime attribute. The CallDirection attribute is set as described
 in Section 10.3.14.

 The UploadVCR request MUST contain a ServiceIdentity attribute. The
 serviceID is 100, the subservice ID is 3 (ViPR number service) and
 the VService ID must identify the VService for which this UploadVCR
 is associated. The instance is arbitrary and are ignored by the ViPR
 server.

 If the response was an error response and was of type 474, it means
 that the client sent a UploadVCR request on a TCP connection but had
 not yet registered and had not yet sent a VService publication with a
 VServiceID matching that of the UploadVCR. If the client hadn’t
 registered and published a matching VService, it MUST now do so. If
 it had, there has been some kind of synchronization error. The
 client SHOULD generate an alarm. Then, it MUST disconnect, generate
 a new register (without the Client-Handle) and a new VService
 publication.

 If the response was an error response and was of type 400, it means
 that the client did not construct the request properly. The client
 MUST NOT retry unless it changes the content or set of attributes in
 the request to match the requirements defined here.

8.7. Subscribing to Number Service

 In order to learn about validated numbers, a ViPR client MUST
 subscribe for the ViPR Number Service. The client should subscribe

Rosenberg, et al. Expires April 28, 2011 [Page 25]

Internet-Draft ViPR Access Protocol October 2010

 to just its primary ViPR server.

 To create a subscription, the client creates a Subscribe request.
 The request is formed as described in Section 4. It MUST NOT be sent
 if the client has not previously generated a successful Register
 request on this connection.

 Each initial Subscribe request MUST omit the SubscriptionID
 attribute; that attribute is only used when withdrawing a
 subscription. The client MUST include a ServiceIdentity attribute in
 the request. The service ID MUST be 101, the subserviceID MUST be 3,
 the VServiceID MUST be the VServiceID for the VService from which
 learned numbers are desired, and the instance value MUST be all ones.
 This will cause the client to receive notifications upon validated
 numbers learned as a consequence of an UploadVCR for that VService.

8.8. Unsubscribing to Services

 A client MAY terminate a subscription at any time. To do that, it
 sends an Unsubscribe request. This request MUST contain the
 SubscriptionID attribute identifying the subscription to be
 terminated. Note that this unsubscription will affect only the
 subscription identified by the subscription ID. Other subscriptions
 will continue to be in effect.

 The client MAY generate additional Unsubscribe requests while the
 transactions for previous Subscribe, Publish or Unpublish requests
 are in progress. By definition a client can only Unsubscribe a
 subscription for which it had already received a successful response
 to a Subscribe request that created the subscription.

 If the response was an error response and was of type 474, it means
 that the client sent a Subscribe request on a TCP connection but had
 not yet registered. If the client hadn’t registered, it MUST now do
 so. If it had registered, there has been some kind of
 synchronization error. The client SHOULD generate an alarm. Then,
 it MUST generate a new register (without the Client-Handle).

 If the response was an error response and was of type 476, it means
 that the client sent an Unsubscribe request for a subscription which
 does not exist. The client SHOULD generate an alarm, since a
 synchronization error has occurred. It should however proceed as if
 the withdrawal was successful.

 If the response was an error response and was of type 400, it means
 that the client did not construct the request properly. The client
 MUST NOT retry unless it changes the content or set of attributes in
 the request to match the requirements defined here.

Rosenberg, et al. Expires April 28, 2011 [Page 26]

Internet-Draft ViPR Access Protocol October 2010

8.9. Receiving Notify

 The ViPR server will generate a Notify request when a new number and
 route are learned. It will send this Notify request to all clients
 which have subscribed to the corresponding VService.

 Once the client has received a successful response to its Subscribe
 request, the client MUST be prepared to receive Notify requests on
 the TCP connection to its ViPR server. When the client receives a
 Notify request, it searches for the SubscriptionID attribute in the
 request. This informs the client of the subscription that this
 notification is associated with. If this subscriptionID is known to
 the client, it proceeds. Otherwise, it MUST generate a Notify error
 response with a 476 response code in an ERROR-RESPONSE attribute.
 When this occurs, there has been a synchronization error between the
 client and server in the set of valid subscriptions. This event
 SHOULD be alarmed, and the contents of the Notify not used.

 The Notify request will contain a ServiceIdentity attribute and a
 ServiceContent attribute, in addition to the standard authentication
 attributes and the SubscriptionID attribute. The ViPR client must
 verify that the ServiceIdentity has service 100, subservice 3. It
 looks at the instance value, and checks that the topmost 64 bits of
 the instance contain a VServiceID that matches one for which the ViPR
 client is currently interested in learning about. The ViPR client
 then extracts the contents of the ServiceContent attribute. This
 will be an XML object, formatted as described below.

 The client SHOULD store the phone number, SIP URI and Ticket. When
 receiving a future call to that phone number, it SHOULD send a SIP
 INVITE request to the SIP URI and include the ticket in an X-Cisco-
 ViPR-Ticket header field.

8.10. Receiving PublishRevoke

 The PublishRevoke method is defined only for the VService, not for
 the Number Service. The ViPR server will send a PublishRevoke for a
 VService if the corresponding DHT is no longer available. The
 request will contain the ServiceIdentity attribute, which indicates
 the specific VService and instance that are being withdrawn. If
 these correspond to a known VService, the client should consider that
 service deactivated, and periodically try to republish it.

9. ViPR Server Procedures

Rosenberg, et al. Expires April 28, 2011 [Page 27]

Internet-Draft ViPR Access Protocol October 2010

9.1. Connection Establishment

 The ViPR server MUST be prepared to receive incoming TCP or TLS
 connections on a configure port. Whether or not TCP or TLS is used,
 is a configured property of that port.

9.2. Registration

 The purpose of registrations is to create VAP client objects, which
 represent a VAP connection and contain the state described in
 Section 6, and then link those with a TCP connection. Each VAP
 connection can be considered a client object, linked to one and only
 one TCP connection at a time.

 The first request that the server will receive over the TCP
 connection will be a Register request. This request is first
 processed as described in Section 5.3. Assuming those procedures
 succeed, the server checks for the Client-Handle attribute in the
 Register request. If present, the server checks if it currently has
 a client state object with that handle. If the client object was
 already bound to another TCP connection, that other TCP connection
 MUST be closed by the server, and then the new TCP connection MUST be
 bound to the client object.

 If the Register request had a Client-Handle attribute, but there were
 no client objects with that handle, the server MUST generate an error
 response and MUST include an ERROR-CODE attribute with a response
 code of 471. This is due to a state synchronization error between
 the client and server. The server SHOULD generate an alarm.

 If the Register did not have a Client-Handle attribute, it is a
 request to create a client object. The server examines the Protocol-
 Version attribute from the request. If the major version indicated
 in the attribute is higher than the version supported by the server,
 the server MUST reject the Register request with an error response
 and include an ERROR-CODE attribute with a response code of 478.
 That error response MUST include a Protocol-Version attribute that
 contains the major and minor protocol versions supported by the
 server.

 Next, the server MUST create a new client object, and allocate a new
 Client-Handle for it. The Client-Handle MUST be unique amongst all
 other Client-Handles known to this server, across all clients that
 are connected to it.

 If the registration succeeds, the server sends a success response.
 This response MUST include the Client-Handle attribute containing the
 handle created by the server. The response MUST include a Keepalive

Rosenberg, et al. Expires April 28, 2011 [Page 28]

Internet-Draft ViPR Access Protocol October 2010

 attribute, indicating the time in milliseconds that the server will
 need to see traffic from the client in order to continue to maintain
 the client object.

9.3. Unregistration

 The client can gracefully disconnect by using an Unregister request.

 If the server receives an Unregister request on a TCP connection, it
 first looks for the client object bound to that connection. If there
 is no client object bound to it, it means that the client has sent an
 Unregister request prior to registering, or there has been some kind
 of synchronization error. The server MUST respond with an error
 response, and MUST include an ERROR-CODE attribute with a response
 code of 474.

 Otherwise, if the client object is known to the server, it MUST
 generate a success response. Once it does, the server MUST destroy
 the client, its associated subscriptions, and published VService
 instances. It then sets a timer equal to thirty seconds. If the
 client has not closed the TCP connection bound to this client object,
 the server MUST close the TCP connection.

 If, as a consequence of the deletion of those VService instances,
 there are no longer any instances left for a VService, that VService
 and its associated data (BlackWhite, DHT, numberCount) are removed.

 Note that unregistration does not ever remove VCRs.

9.4. Publication

 Behavior depends on whether the publication is for the VService or
 the ViPR number service.

 The ViPR server extracts the ServiceIdentity attribute. If the value
 is not one of the following:

 1. ServiceID is 101 and SubserviceID is 3.
 2. ServiceID is 101 and SubserviceID is 4

 the ViPR server sends a 400 response.

9.4.1. VService

 If the Publish request is for service 100, sub-service 4, it
 indicates that this was for the VService. The ViPR server first
 looks for the client object bound to that connection. If there is no
 client object bound to it, it means that the client has sent a

Rosenberg, et al. Expires April 28, 2011 [Page 29]

Internet-Draft ViPR Access Protocol October 2010

 Publish request prior to registering, or there has been some kind of
 synchronization error. The server MUST respond with an error
 response, and MUST include an ERROR-CODE attribute with a response
 code of 474.

 The ViPR server extracts the contents of the ServiceContent
 attribute. This will be an XML object structured as defined in
 Section 10.1. It also extracts the VServiceID and Instance values
 from the ServiceIdentity attribute.

 First, the ViPR server checks if it has any VService objects with the
 VServiceID from the publish.

 o If it does, it replaces the BlackWhite, numberCount, domain, and
 DHTName parameters of that VService with the ones from the
 publish. Next, it checks to see if the instance is currently an
 instance associated with that VService:
 o
 * If it is, the route elements for that instance are replaced
 with the route values from the publish.
 * If it is not, a new instance object is created, associated with
 the client and the VService, and is linked with the route
 values from the publish.
 o If it does not, it creates a new VService object, and associates
 it with the values of the BlackWhite, numberCount, domain, and
 DHTName parameters of the VService. Next, it creates a new
 instance, associates it with the VService, The route values from
 the publish are associated with that instance.

 ViPR server sends a Publish success response. The ViPR server looks
 for all other ViPR services in the same DHT as the one from this
 Publish, it sums up their numberCounts, and includes that value in
 the "current" field of the Quota attribute in the Publish response.
 Since there is a limit on the count of the numbers that can be
 published into the DHT, this mechanism allows the ViPR server to
 inform the clients about the total usage across all clients of this
 ViPR server. Note further, that since the ViPR server itself does
 not have local memory of the numbers it stored into the DHT, the ViPR
 server cannot determine how many numbers have been placed into the
 DHT for a particular VService. That information is known only to the
 client. That is why the client informs the ViPR server of how many
 numbers it has published as part of the VService publication.

 The ViPR server places its configured per-DHT limit for that DHT into
 the "limit" field in the Quota attribute in the Publish response.
 This tells the clients the maximum count of phone numbers which can
 be published.

Rosenberg, et al. Expires April 28, 2011 [Page 30]

Internet-Draft ViPR Access Protocol October 2010

 The ViPR server includes a DHTLifetime attribute in the response.
 This attribute indicates the amount of time that data will remain in
 the DHT prior to be expunged. This is a configured property of the
 DHT.

9.4.2. ViPR Number Service

 If the server receives a Publish request for service 100, sub-service
 3, it indicates that this was for the ViPR Number Service. The ViPR
 server first looks for the client object bound to that connection.
 If there is no client object bound to it, it means that the client
 has sent a Publish request prior to registering, or there has been
 some kind of synchronization error. The ViPR server MUST respond
 with an error response, and MUST include an ERROR-CODE attribute with
 a response code of 474. The ViPR server extracts the VServiceID from
 the ServiceIdentity attribute. It checks that, for that VServiceID,
 there is a VService object currently being stored. If not, the ViPR
 server MUST respond with an error response, and MUST include an
 ERROR-CODE attribute with a response code of 474.

 Next, the ViPR server extracts the number from the CalledNum
 attribute. The ViPR server extracts the DHT from the VService object
 associated with the VServiceID from the Publish. For the number, the
 ViPR server takes the number and treats it as an ASCII string, called
 the suffix seed.

 Next, the ViPR server generates two additional strings. The first is
 formed by taking the suffix seed, and prepending the string "COPY1".
 The second is formed by taking the suffix seed and prepending the
 string "COPY2".

 Each of the three values is passed through the SHA-1 hash function,
 producing 160 bits. The least significant 128 bits of this are
 taken. Those 128 bits, for each of the three values, form the
 Resource-ID against which a STORE is to be performed. Three separate
 stores are performed in order to provide security in the DHT. Each
 store operation writes an object into the DHT whose value is a
 dictionary (or map) entry.

 Conceptually:

 Store(Resource-ID, object)

 Where Resource-ID is the 128 bit Resource-ID computed above. The
 stored object is a dictionary entry which has a key and a value:

 Object = {key,value}

Rosenberg, et al. Expires April 28, 2011 [Page 31]

Internet-Draft ViPR Access Protocol October 2010

 Here, the key is formed by taking the peerID of the storing node in
 hex format, without the "0x", appending a "+", followed by the
 VServiceID in hex format, without the "0x". For example, if a peer
 with peerID 0x8e60f5fab753037f64ab6c53947fd532 receives a Publish
 with a VServiceID of 0x7eeb6a7036478351, the resulting key is:

 8e60f5fab753037f64ab6c53947fd532+7eeb6a7036478351

 Both parts of this key are important. Using the peerID of the node
 performing the store basically segments the keyspace of the
 dictionary so that no two peers ever store using the same key.
 Indeed, the responsible node will verify the signature over the
 stored data and check the peerID against the value of the key, to
 make sure that a conflict does not take place. The usage of the
 VService allows for a single ViPR server to service multiple call
 agents, and to ensure that numbers published by one call agent (using
 one VServiceID) do not clobber or step on numbers published by
 another call agent (using a different VServiceID). The responsible
 node does not verify or check the VServiceID.

 In this version of the protocol, only one of the three stored objects
 is read. Three are stored to allow an enhancement in the future,
 which will read all three and use a simple voting algorithm to handle
 inconsistencies in the results. In this way, if a malicious node
 returns no result or fakes the result, as long as the remaining two
 results are retrieved, the validation process can continue. This
 means that the compromise of a single node has, with only extremely
 low probability (order Log(N)/N where N is the number of nodes in the
 ring) of being able to disrupt validation against a number.

 The value of the dictionary entry is a sequence of TLV attributes,
 with the same format used by VAP. In this case, it is a single
 attribute, the peerID attribute. This attribute is populated with
 the peerID of the ViPR server in the DHT into which the STORE is
 being performed. The reason for using the TLV construct is to
 provide extensibility in the contents of the DHT. In the future, if
 needed, new ViPR nodes can add additional data, each with a specific
 attribute type. Older nodes will ignore any unknown attributes and
 go right for the peerID attribute, while newer ones can process the
 new and old attributes.

 The Store operations are paced into the DHT at a fixed rate. The
 ViPR server maintains a queue. This queue is filled with store
 requests. The ViPR server services that queue at a fixed,
 provisioned rate, the Store Rate Limit. When serviced, the next
 Store operation in the queue is serviced. Because transactions from
 clients are pipelined, there can only be as many Store operations in
 the queue as there are simultaneously connected clients, times three

Rosenberg, et al. Expires April 28, 2011 [Page 32]

Internet-Draft ViPR Access Protocol October 2010

 (three Stores per Publish, one Publish at a timer per client). The
 Publish is then responded to with a success response. Note that, a
 success response is not sent until all three Store operations have
 been performed. If there is a failure due to inability to store into
 the DHT, the server returns a 481 error response. Note that a ViPR
 server cannot disambiguate the first Publish for a service and an
 updated Publish. It performs identical processing for each.

 Note further that, the DHT itself will replicate each of the three
 stored values, producing a total of nine copies of each number into
 the DHT.

9.5. Unpublish

 The ViPR client can only Unpublish for the VService.

 The ViPR server extracts the VServiceID and instance from the
 ServiceIdentity in the Unpublish. It checks to see if there is an
 instance with that ID associated with the VService with that
 VServiceID. If there is, it removes the instance object and its
 associated SIPURI. If, as a consequence, there are no longer any
 instances associated with the VService, it deletes the VService
 object and its associated attributes.

9.6. Subscribe

 If the server receives a Subscribe request on a connection, it first
 looks for the client object bound to that connection. If there is no
 client object bound to it, it means that the client has sent a
 Subscribe request prior to registering, or there has been some kind
 of synchronization error. The server MUST respond with an error
 response, and MUST include an ERROR-CODE attribute with a response
 code of 474.

 The ViPR server checks that the ServiceIdentity from the request. If
 verifies that the ServiceID is 101 and the SubServiceID is 3. Any
 other combination causes the server to return a 400 response. The
 subscription is to the VServiceID identified in the ServiceIdentity
 attribute.

 If the ServiceIdentity is valid, the server MUST create a new
 subscription object. It MUST allocate a SubscriptionID for this
 subscription. This ID MUST be unique across all SubscriptionIDs
 associated with this client. The subscription MUST be linked with
 the client object. It is not permitted for there to be multiple
 subscriptions from a client with identical VServices since each
 subscription is for a unique service/subservice/VServiceID/instance,
 the ViPR server can hash these to get a 32 bit SubscriptionID, or

Rosenberg, et al. Expires April 28, 2011 [Page 33]

Internet-Draft ViPR Access Protocol October 2010

 assign them sequentially and store the associations.

 The ViPR server then checks the VServiceID from the ServiceIdentity
 attribute. The ViPR server adds a subscription object to the client
 object, and associates it with a SubscriptionID and the VServiceID
 which is being watched.

 The server then generates a success response to the Subscribe
 request. It MUST include the SubscriptionID attribute in the
 response, identifying this subscription.

9.7. Unsubscribe

 If the server receives an Unsubscribe request on a connection, it
 first looks for the client object bound to that connection. If there
 is no client object bound to it, it means that the client has sent an
 Unsubscribe request prior to registering, or there has been some kind
 of synchronization error. The server MUST respond with an error
 response, and MUST include an ERROR-CODE attribute with a response
 code of 474.

 Next, the server extracts the SubscriptionID attribute from the
 request. If it contains a SubscriptionID not known to the server,
 there has been a synchronization error. The server MUST reject the
 Unsubscribe request with an error response and MUST include an ERROR-
 CODE attribute with a value of 476.

 Assuming the SubscriptionID is known, the server MUST remove the
 subscription object from the client object, and destroy it. The
 server will therefore no longer send notifications associated with
 this subscription. The server MUST respond to the Unsubscribe
 request with a success response.

9.8. UploadVCR

 The ViPR server first processes the request like any other VAP
 request, specifically it will perform the message integrity check and
 follow associated procedures.

 If the UploadVCR was received on a TCP connection but the client had
 not yet registered over that connection, it is an error and the ViPR
 server returns a 474. If the client had registered, but the
 VServiceID from the ServiceIdentity doesn’t match a known VService,
 the UploadVCR is rejected with a 474.

 Otherwise, the ViPR server extracts the CallDirection, StartTime,
 StopTime, CallingNum and CalledNum attributes, and stores them.
 Further processing depends on whether it was an originating or

Rosenberg, et al. Expires April 28, 2011 [Page 34]

Internet-Draft ViPR Access Protocol October 2010

 terminating UploadVCR.

9.8.1. Originating

 Once stored, the ViPR server starts timer Tv. Tv is selected as a
 random number, in seconds, starting from 30 and ending at the maximum
 validation time, which is a configured parameter of the ViPR Server
 for the DHT associated with the VService. The validation request -
 which includes the VCR - is stored until that timer fires. The
 validation request includes the details from the UploadVCR (calling,
 called numbers, start and stop time), along with the VService
 associated with the UploadVCR.

 When the timer fires, the ViPR server examines the called party
 number. This number will be a plus followed by N digits. Using this
 number, it forms a lookup key K. K is equal to the least significant
 128 bits of the SHA1 hash of the called party number in string form,
 including the + sign. Next, the ViPR server extracts VService
 associated with the VCR. It checks to see if this VService is
 currently being published. If so, it performs a lookup into the DHT
 using key K. Each DHT node has a queue on read transactions. These
 lookups are queued because the node has, per-DHT, a limit on the rate
 at which it will perform read requests.

 Once the lookup request comes to the top of the queue and it can be
 serviced, the resulting fetch will be a result, a no-match, or a
 timeout. If there is a no-match or timeout, ViPR server processing
 is complete.

 If there is a result, the ViPR server will now have all of the
 dictionary entries associated with the Resource-ID. Each dictionary
 entry is a key and a value. The key is the concatenation of a peerID
 and VServiceID, and the value is a set of TLV attributes. The ViPR
 server parses each dictionary entry as a sequence of TLV attributes,
 and extracts the first TLV value whose type is peerID (type 0x2008).
 From this, the ViPR server obtains a set of {peerID, VServiceID}s.

 The ViPR server SHOULD perform validation, using the validation
 protocol [VIPR-PVP]. A ViPR server MAY use any algorithm of its
 choosing to determine whether a number should be validated once, many
 times, or not at all. When the ViPR server is satisfied that a
 number has been sufficiently validated, it SHOULD send a Notify.
 Furthermore, during validation, the ViPR server SHOULD compare the
 domain of the learned number with the blacklist for the VService
 associated with the matching VCR. If the domain is on the blacklist
 or not on the whitelist, a Notify SHOULD NOT be sent.

 If a Notify is to be sent as a consequence of a validation success,

Rosenberg, et al. Expires April 28, 2011 [Page 35]

Internet-Draft ViPR Access Protocol October 2010

 the ViPR server looks to see if there is currently a subscription
 from a client whose VServiceID matches the one from the VCR that
 triggered the validation that is causing the notification. For each
 matching one, it sends a Notify message. The ServiceContent in the
 Notify contains a ValInfo XML containing the SIPURI and ticket
 learned from the validation. It also contains the full E.164 number
 of the called number which validated.

9.8.2. Terminating

 When the ViPR server receives a terminating UploadVCR, it stores the
 information, awaiting the receipt of a validation query. This
 information MUST be stored for a minimum whose value is a configured
 property of the DHT.

9.9. Sending Notify

 The ViPR server MUST NOT send a Notify until it had already sent a
 response to the Subscribe message that created the subscription, for
 which the Notify is being sent.

 When a Notify is to be sent, it must contain the SubscriptionID
 attribute associated with the subscription on which the notification
 is being sent. This will differ for each client that is subscribed.

 The Notify MUST contain the ServiceIdentity attribute, containing
 service 100, subservice 3, a VServiceID for the VService on which the
 number was learned, and an instance ID whose instance is all ones.
 The content of the ServiceContent attribute is an XML document, which
 is the scrubbed document from the ValExchange response. An example
 document is:

Rosenberg, et al. Expires April 28, 2011 [Page 36]

Internet-Draft ViPR Access Protocol October 2010

 <?xml version="1.0" encoding="utf-8"?>
 <valinfo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="valinfo.xsd">
 <number>+17325552496</number>
 <ticket>7hasd88a7sd6a6d7989xkk8g7a6sdq78ekaz</ticket>
 <route>
 <SIPURI>
 sip:17ahhs$7zpaksux6z5==@example.com:2371;maddr=1.2.3.4
 </SIPURI>
 </route>
 <route>
 <SIPURI>
 sip:17ahhs$7zpaksux6z5==@example.com:2371;maddr=1.2.3.5
 </SIPURI>
 </route>
 </valinfo>

 Figure 8: Example Notify XML

9.10. Sending PublishRevoke

 The ViPR server is only permitted to PublishRevoke the VService; it
 cannot withdraw Number Service publications. It should PublishRevoke
 published VServices when the corresponding DHT is no longer
 available. If this should happen, the ViPR server sends a
 PublishRevoke for each VService that was published which utilized the
 DHT which is no longer available. That PublishRevoke MUST include a
 ServiceIdentity attribute indicating the VServiceID and instanceID of
 the PublishRevoke service. Furthermore, it SHOULD include a
 ServiceContent attribute with the corresponding service description;
 this is used strictly for diagnostic purposes and is not needed by
 the client. Once sent, the ViPR server removes that instance of that
 VServiceID from its internal state.

10. Syntax Details

10.1. XML Schema for VService

 This document is included in publications for the ViPR service. Note
 its target namespace.

 <?xml version="1.0" encoding="utf-8"?>

 <xs:schema xmlns="http://www.cisco.com/namespaces/saf-uc"
 attributeFormDefault="unqualified" elementFormDefault="qualified"
 targetNamespace="http://www.cisco.com/namespaces/saf-uc"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

Rosenberg, et al. Expires April 28, 2011 [Page 37]

Internet-Draft ViPR Access Protocol October 2010

 <xs:element name="service-description">
 <xs:complexType>
 <xs:choice>
 <xs:element name="vservice">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="DHTname" type="xs:string" />
 <xs:element name="DIDCount" type="xs:integer" />
 <xs:element minOccurs="1" maxOccurs="1" name="domain"
 type="xs:string" />
 <xs:choice minOccurs="0" maxOccurs="1">
 <xs:element
 xmlns:q1="http://www.cisco.com/namespaces/viprtrunk"
 name="blacklist" type="q1:whiteOrBlackList" />
 <xs:element
 xmlns:q2="http://www.cisco.com/namespaces/viprtrunk"
 name="whitelist" type="q2:whiteOrBlackList" />
 </xs:choice>
 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 <xs:element
 xmlns:q1="http://www.cisco.com/namespaces/viprtrunk"
 name="route" type="q1:routeType" />
 </xs:sequence>
 <xs:any minOccurs="0" maxOccurs="unbounded"
 namespace="##other"
 processContents="lax" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 <xs:attribute name="schemaVersion" type="xs:string"
 use="required" />
 <xs:attribute name="id" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 <xs:complexType name="whiteOrBlackList">
 <xs:sequence minOccurs="1" maxOccurs="unbounded">
 <xs:element name="domain" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="routeType">
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="unbounded" name="SIPURI"
 type="xs:string" />
 <xs:any minOccurs="0" maxOccurs="unbounded"
 namespace="##other" />
 </xs:sequence>
 </xs:complexType>

Rosenberg, et al. Expires April 28, 2011 [Page 38]

Internet-Draft ViPR Access Protocol October 2010

 </xs:schema>

 Figure 9: VService XML Schema

10.2. XML Schema for ValInfo

 This document is passed from the terminating ViPR server to the
 originating, containing the ticket, routes and number which was
 validated. The originating ViPR server verifies this and passes it
 to the client in VService notifications.

 <?xml version="1.0" encoding="utf-8" ?>
 <xs:schema elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="valinfo">
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element minOccurs="1" maxOccurs="1" name="number"
 type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="ticket"
 type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="unbounded" name="route"
 type="routeType" />
 <xs:any minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="routeType">
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="unbounded" name="SIPURI"
 type="xs:string" />
 <xs:any minOccurs="0" maxOccurs="unbounded"
 namespace="##other" />
 </xs:sequence>
 </xs:complexType>
 </xs:schema>

 Figure 10: ValInfo XML Schema

10.3. VAP Attributes

 This section enumerates the attributes used by VAP. The attribute
 names and corresponding types are:

Rosenberg, et al. Expires April 28, 2011 [Page 39]

Internet-Draft ViPR Access Protocol October 2010

 Attribute Name Type
 -------------- ----
 USERNAME 0x0006
 MESSAGE-INTEGRITY 0x0008
 REALM 0x0014
 ERROR-CODE 0x0009
 Client-Name 0x1001
 Client-Handle 0x1002
 Protocol-Version 0x1003
 Client-Label 0x1005
 Keepalive 0x1006
 ServiceIdentity 0x1007
 ServiceVersion 0x100b
 ServiceContent 0x100c
 SubscriptionID 0x100e
 CallDirection 0x2001
 StartTime 0x2002
 StopTime 0x2003
 CallingNum 0x2004
 CalledNum 0x2005
 peerID 0x2008
 Quota 0x200a
 DHTLifetime 0x200b

 Figure 11: VAP Attributes

10.3.1. USERNAME

 The USERNAME attribute is used for authentication. It identifies the
 shared secret used in the message integrity check. Consequently, the
 USERNAME MUST be included in any request that contains the MESSAGE-
 INTEGRITY attribute.

 The value of USERNAME is a variable length opaque value of UTF-8
 characters. Note that, as described above, if the USERNAME is not a
 multiple of four bytes it is padded for encoding into the VAP
 message, in which case the attribute length represents the length of
 the USERNAME prior to padding.

10.3.2. REALM

 The REALM attribute is present in requests and responses. It
 contains text which meets the grammar for "realm" as described in RFC
 3261 [RFC3261], and will thus contain a quoted string (including the
 quotes).

 The value of this attribute MUST always be "ViPR".

Rosenberg, et al. Expires April 28, 2011 [Page 40]

Internet-Draft ViPR Access Protocol October 2010

10.3.3. MESSAGE-INTEGRITY

 The MESSAGE-INTEGRITY attribute contains an HMAC-SHA1 [RFC2104] of
 the message. The MESSAGE-INTEGRITY attribute can be present in any
 message type. Since it uses the SHA1 hash, the HMAC will be 20
 bytes. The text used as input to HMAC is the message, including the
 header, up to and including the attribute preceding the MESSAGE-
 INTEGRITY attribute. That text is then padded with zeroes so as to
 be a multiple of 64 bytes. The MESSAGE-INTEGRITY attribute MUST be
 the last attribute in the message.

 The 16-byte key for MESSAGE-INTEGRITY HMAC is formed by taking the
 MD5 hash of the result of concatenating the following five fields:
 (1) The username, with any quotes and trailing nulls removed, (2) A
 single colon, (3) The realm, with any quotes and trailing nulls
 removed, (4) A single colon, and (5) The password, with any trailing
 nulls removed. Note that the password itself never appears in the
 message.

 Since the hash is computed over the entire message, it includes the
 length field from the message header. This length indicates the
 length of the entire message, including the MESSAGE-INTEGRITY
 attribute itself. Consequently, the MESSAGE-INTEGRITY attribute MUST
 be inserted into the message as the last attribute (with dummy
 content) prior to the computation of the integrity check. Once the
 computation is performed, the value of the attribute can be filled
 in. This ensures the length has the correct value when the hash is
 performed.

10.3.4. ERROR-CODE

 The ERROR-CODE attribute is present in error responses. It is a
 numeric value in the range of 100 to 699 plus a textual reason phrase
 encoded in UTF-8, and is consistent in its code assignments and
 semantics with [RFC3261] and [RFC2616]. The reason phrase is meant
 for user consumption (typically freeform fields in alarms and logs),
 and can be anything appropriate for the response code. Recommended
 reason phrases for the defined response codes are presented below.

 To facilitate processing, the class of the error code (the hundreds
 digit) is encoded separately from the rest of the code.

Rosenberg, et al. Expires April 28, 2011 [Page 41]

Internet-Draft ViPR Access Protocol October 2010

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 0 |Class| Number |
 +-+
 | Reason Phrase (variable) ..
 +-+

 Figure 12: ERROR-CODE Syntax

 The class represents the hundreds digit of the response code. The
 value MUST be between 1 and 6. The number represents the response
 code modulo 100, and its value MUST be between 0 and 99.

 If the reason phrase has a length that is not a multiple of four
 bytes, it is padded for encoding into the message, in which case the
 attribute length represents the length of the entire ERROR-CODE
 attribute (including the reason phrase) prior to padding.

 The following response codes, along with their recommended reason
 phrases (in brackets) are defined at this time:

 400 (Bad Request): The request was malformed. The requestor should
 not retry the request without modification from the previous
 attempt.
 431 (Integrity Check Failure): The request contained a MESSAGE-
 INTEGRITY attribute, but the HMAC failed verification. This could
 be a sign of a potential attack, or misconfiguration of the
 password .
 436 (Unknown Username): The username was not known. This was likely
 due to a misconfiguration.
 471 (Bad Client Handle): The client handle provided in the Register
 request is not known.
 472 (Version Number Too Low): The client published a service whose
 version was lower than the currently held one by the server.
 474 (Unregistered): The client tried an operation, such as publish
 or subscribe, but it has not yet registered.
 476 (Unknown Subscription): The referenced subscription does not
 exist.
 477 (Already Registered): The client tried an initial Register
 request, but it is already registered.
 478 (Unsupported Protocol Version): The server does not support the
 protocol version requested by the client.
 481 (Publication Failed): The publication was attempted but could
 not be performed due to an error reaching the DHT. The client
 should try again.

Rosenberg, et al. Expires April 28, 2011 [Page 42]

Internet-Draft ViPR Access Protocol October 2010

10.3.5. Client-Name

 The Client-Name attribute is included the Register request. It
 contains a textual description, in UTF-8, of the software being used
 by the client, including manufacturer and version number. The
 attribute has no impact on operation of the protocol, and serves only
 as a tool for diagnostic and debugging purposes. The value of
 Client-Name is variable length. If the value of Client-Name is not a
 multiple of four bytes, it is padded for encoding into the VAP
 message, in which case the attribute length represents the length of
 the attribute prior to padding. However, it MUST be less than 255
 characters and MUST be at least one character long.

 It is RECOMMENDED that it be constructed as:

 <vendor>/<product>/<version>/<hostname or IP>

 Where version includes major, minor and build.

10.3.6. Client-Handle

 This attribute has a 32 bit value, representing an unsigned integer
 to be used as the client handle.

10.3.7. Protocol-Version

 This attribute is 32 bits, consisting of two 16-bit unsigned
 integers, representing the major and minor version numbers of the
 protocol:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Major Version | Minor Version |
 +-+

 Figure 13: Protocol-Version Syntax

10.3.8. Client-Label

 This attribute is a UTF-8 string, which MUST be between 1 and 255
 characters. It is not used by this specification.

Rosenberg, et al. Expires April 28, 2011 [Page 43]

Internet-Draft ViPR Access Protocol October 2010

10.3.9. Keepalive

 This attribute is a 32 bit unsigned integer, representing the number
 of milliseconds that the server will retain client state after the
 last message from the client has been received.

10.3.10. ServiceIdentity

 The format of the ServiceIdentity attribute is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Service ID | Subservice ID |
 +-+
 | VServiceID (most significant) |
 +-+
 | VServiceID (2nd most significant) |
 +-+
 | Instance (3rd significant) |
 +-+
 | Instance (least significant) |
 +-+

 Figure 14: ServiceIdentity Attribute

 The value of serviceID must always be 101. A Subservice value of 4
 indicates VService publications. A subservice value of 3 indicates
 number publications.

10.3.11. ServiceVersion

 The ServiceVersion field is a 32 bit unsigned integer. It contains
 the version number for the service advertised in the Publish request.
 It always increments by at least one for each change in the service.

10.3.12. ServiceContent

 The ServiceContent is the actual content of the service definition.
 It is an arbitrary number of bytes. If the number of bytes of
 content are not a multiple of four, the content is padded with
 arbitrary data so that it is a multiple of four. The value of the
 length field of the attribute is the length prior to padding.

 The ServiceContent MUST be less than 32k, despite the fact that the
 length field of the attribute itself would allow content up to 64k.

Rosenberg, et al. Expires April 28, 2011 [Page 44]

Internet-Draft ViPR Access Protocol October 2010

10.3.13. SubscriptionID

 The SubscriptionID is present in successful responses to Subscribe
 and in Unsubscribe messages. It contains an identifier for the
 subscription. It is a unique handle, unique within all subscriptions
 between the client and this server. It is an unsigned 32 bit
 integer. It is also present in Notify and Withdraw requests.

10.3.14. CallDirection

 This attribute is a 32 bit unsigned integer. A value of 0 indicates
 a received call. A value of 1 indicates a sent call. Other values
 are reserved and not valid in this version of the protocol.

10.3.15. StartTime

 The start and is a 64 bit NTP time value. The start time is measured
 in the following way:

 1. For calls sent to the PSTN (i.e., originated by this call agent),
 the start time is measured from the instant of the receipt of the
 call acceptance message indicating that the called party answered
 the call. For SIP, this would correspond to receipt of the 200
 OK to the original SIP INVITE.
 2. For calls received from the PSTN, (i.e., received by this call
 agent), the start time is measured from the instant of
 transmission of the call acceptance message towards the PSTN,
 indicating that the called party answered the call. For SIP,
 this would correspond to transmission of the 200 OK to the
 original SIP INVITE.

10.3.16. StopTime Attribute

 The stop time is a 64 bit NTP value and is measured in the following
 way:

 1. For the call agent which terminates the call, it corresponds to
 the transmission of the call termination message towards the
 PSTN. For SIP, this corresponds to the transmission of a SIP BYE
 request.
 2. For the call agent which receives the termination, it corresponds
 to the receipt of the call termination message from the PSTN.
 For SIP this corresponds to the receipt of a SIP BYE request.

10.3.17. CallingNum Attribute

 The calling party number MUST be expressed in fully qualified E.164
 format, and the attribute is a string with variable length.

Rosenberg, et al. Expires April 28, 2011 [Page 45]

Internet-Draft ViPR Access Protocol October 2010

 The calling party number is complicated. This is because this value
 is often munged and modified by the PSTN as it traverses the network.
 Fortunately, ViPR does not depend on it being delivered or being
 correct, but when it is delivered it improves security. Its presence
 is also needed for validating numbers which connect to multiple
 users, such that multiple calls to that number are often in progress
 at the same time. For example, 800 numbers.

 For the originating call agent, the value is the E.164 number of
 calling party number delivered to the PSTN. For the terminating call
 agent, the value is E.164 normalized value of the caller ID received
 from the PSTN. This will require that national numbers delivered
 over a PRI are normalized to include their country code.

10.3.18. CalledNum Attribute

 The called party number MUST be expressed in fully qualified E.164
 format, and it is represented in the attribute as a string with
 variable length. The following rules apply for computation of the
 called party number:

 For the call agent which initiates the call, the called party number
 is the E.164 number, including the leading plus, of the target of the
 call. Of course, this may not (and is probably not) the same as the
 digit sequence dialed by the calling party. The originating call
 agent MUST normalize this number to E.164 format based on its local
 dialing rules.

 For the call agent which receives the call, the called party number
 is the E.164 number, including the leading plus, of the target of the
 call. Of course, this may not (and is probably not), the same as the
 called party number as delivered by the PSTN. It is likely that
 country codes, for example, are omitted from the message delivered by
 the PSTN. It is the responsibility of the terminating call agent to
 reconstruct the E.164 number of the called party.

10.3.19. Quota Attribute

 This attribute consists of two 32 bit values. The first is the quota
 limit, which is the total number of numbers that can be published by
 this and other call agents attached to this ViPR server into this
 DHT. The second is the current total number of numbers being
 published by this and other call agents attached to this ViPR server
 into this DHT. If the current value is less than the quota value,
 everything is fine. Once it exceeds it, the DHT is likely to begin
 dropping entries and the admin needs to reduce the number of numbers
 being published.

Rosenberg, et al. Expires April 28, 2011 [Page 46]

Internet-Draft ViPR Access Protocol October 2010

10.3.20. DHTLifetime Attribute

 This attribute is a 32 bit unsigned integer. It indicates the number
 of seconds that data written into the DHT will remain in the DHT
 prior to being expunged.

11. Security Considerations

11.1. Outsider Attacks

 VAP prevents against traditional outsider attacks by means of TLS
 along with password-based digest authentication. That mechanism MUST
 be implemented by clients and servers and SHOULD be used.

11.2. Insider Attacks

 Of much more concern are attacks whereby the client is authenticated,
 but it misuses the VAP connection to attack the overall system.

 The principal attack to be considered is where an attacker injects
 false numbers by sending Publish requests for the number service
 containing numbers that the client doesn’t own. This attack is the
 fundamental security problem that ViPR overall addresses with the
 validation mechanism, and so that attack is handled outside of VAP.

 Another potential attack is a flooding attack where a client sends a
 large amount of numbers into the DHT. This attack is prevented by
 the distributed quota mechanism within the ViPR RELOAD usage, and
 thus prevented outside of VAP. Similarly, an attacker might try to
 DOS the ViPR network by sending a large volume of reads or writes
 into the DHT. This is prevented by means of the rate control
 mechanisms enforced by the ViPR server.

12. IANA Considerations

 There are no IANA considerations associated with this specification.

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,

Rosenberg, et al. Expires April 28, 2011 [Page 47]

Internet-Draft ViPR Access Protocol October 2010

 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 September 1981.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",
 RFC 2617, June 1999.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [VIPR-PVP]
 Rosenberg, J., Jennings, C., and M. Petit-Huguenin, "The
 Public Switched Telephone Network (PSTN) Validation
 Protocol (PVP)", draft-rosenberg-dispatch-vipr-pvp-03
 (work in progress), October 2010.

13.2. Informative References

 [VIPR-OVERVIEW]
 Rosenberg, J., Jennings, C., and M. Petit-Huguenin,
 "Verification Involving PSTN Reachability: Requirements
 and Architecture Overview",
 draft-rosenberg-dispatch-vipr-overview-04 (work in
 progress), October 2010.

Appendix A. Release notes

 This section must be removed before publication as an RFC.

A.1. Modifications between rosenberg-03 and rosenberg-02

Rosenberg, et al. Expires April 28, 2011 [Page 48]

Internet-Draft ViPR Access Protocol October 2010

 o Nits.
 o Shorter I-Ds references.
 o Added terminology section.
 o Changed figures to fit in the page width.
 o Change reference from RFC 2401 to RFC 2104
 o Removed cut & paste error from STUN.
 o Fixed some invalid lists.
 o Section 9.1: Removed mutual authentication to be consistent with
 5.1.
 o Fixed the text for the creation of the resource name in 9.4.2, to
 be consistent with -reload-usage.
 o Fixed example to really contain hexadecimal.

Authors’ Addresses

 Jonathan Rosenberg
 jdrosen.net
 Monmouth, NJ
 US

 Email: jdrosen@jdrosen.net
 URI: http://www.jdrosen.net

 Cullen Jennings
 Cisco
 170 West Tasman Drive
 MS: SJC-21/2
 San Jose, CA 95134
 USA

 Phone: +1 408 421-9990
 Email: fluffy@cisco.com

 Marc Petit-Huguenin
 Stonyfish

 Email: marc@stonyfish.com

Rosenberg, et al. Expires April 28, 2011 [Page 49]

