Survey of IP address autoconfiguration mechanisms for MANETs

draft-bernardos-manet-autoconf-survey-05

Carlos J. Bernardos – Universidad Carlos III de Madrid
Maria Calderon – Universidad Carlos III de Madrid
Hassnaa Moustafa – France Telecom

Maastricht, MEXT WG, 2010-07-26
History of the draft

- Version -00 submitted in July 2005
 - WG created in October 2005
- Version -01 submitted in July 2007
 - Updates, change structure, Hassnaa joined
- Version -02 submitted in October 2007
 - Updates
- Version -03 submitted in April 2008
 - Minor update, to keep the ID alive
- Version -04 submitted in November 2008
 - Minor update, to keep the ID alive
- Version -05 submitted in June 2010
 - Updates, new solutions, better aligned to WG status

Waiting for the basic WG documents to progress, so solution design work could take off
Motivation

● Provide a survey covering IP autoconf proposals
● Analyse and classify similar proposed solutions
● Provide a context for understanding the solution space
 • Together with draft-bernardos-autoconf-solution-space-02, provide a good review and analysis of solution space
Solutions analyzed

• More than 24 solutions analyzed
• Classified in two big groups:
 • For Standalone MANETs
 • For Connected MANETs
• Each group divided in two:
 – Without merging support
 – With merging support
• This classification was just meant to provide some structure, it probably needs to be changed
Characteristics analyzed (I)

- MANET Scenario
 - Standalone MANETs
 - No need for global IP addresses
 - Connected MANETs
 - Global IP addresses needed
 - Gateways might be involved
Characteristics analyzed (II)

- Routing Protocol Dependency
 - Dependent
 - Utilize information from routing protocol
 - Independent
- Address uniqueness
- Distributed/centralized approach
- Partitioning/Merging support
 - Detect MANETs' partitioning
 - Detect MANETs’ merging
 - Avoid IP address conflicts in such cases
Characteristics analyzed (III)

- Prefix assignment support
 - Address assignment
 - Prefix delegation
- Protocol overhead
 - Additional message flooding
 - Local signalling
 - Piggybacking of messages into routing protocol
 - Passive behaviour
Issues of MANET autoconf solutions

- Additional signalling overhead
- Increased protocol complexity and processing load
- Scalability
- Security considerations
- Convergence time
- Routing protocol dependency
- IP address space assignment efficiency
IP autoconf solution space analysis (1)

- Which entities are involved?
 - MANET Routers (distributed approach)
 - MANET Routers and Border Routers
 - MANET Routers and distributed servers
 - MANET Routers and centralised server(s) (centralised approach)

- What type of IP delegation: addresses or prefixes?

- How are IP addresses obtained?
How is IP address uniqueness guaranteed?
 ○ How is address uniqueness detection performed?
 ○ When address uniqueness detection is performed: pre-service and/or in-service?
 ○ How are address conflicts resolved?

How is signalling performed?

Are existing protocols modified?

What are the security considerations?
Next Steps

• Keep the document updated
• Merge with draft-bernardos-autoconf-solution-space-02 and come up with a solution space alike draft (similar to RFC4889?)
• Could be a good starting point for survey/solution space informational document (if re-chartered to do so)
 • Authors are willing to do the job
Classification results (I)

• MANET Scenario
 • Standalone MANETs: 11/24 → 46%
 • Connected MANETs: 13/24 → 54%
 - Gateway involvement
 • IGW involved: 9/13 → 69%
 • IGW not involved: 4/13 → 31%

• Address uniqueness
 • Pre-service DAD: 12/24 → 50%
 • In-service DAD: 5/24 → 21%
 • DAD-free: 7/24 → 29%
Classification results (II)

- **Routing Protocol Dependency**
 - Independent: 15/24 → 62%
 - Dependent: 9/24 → 38%

- **Distributed/centralized approach**
 - Centralized: 2/24 → 8%
 - Fully distributed: 12/24 → 50%
 - Partially distributed: 10/24 → 42%

- **Partitioning/Merging support**
 - Yes: 15/24 → 62%
 - No: 9/24 → 38%
Classification results (III)

- Prefix assignment support
 - Yes: 6/24 → 25%
 - No: 18/24 → 75%

- Protocol overhead
 - Message flooding: 13/24 → 54%
 - Local signalling/piggybacking: 8/24 → 33%
 - Passive: 3/24 → 13%