ECN for RTP over UDP/IP

draft-ietf-avt-ecn-for-rtp-02

Magnus Westerlund
Ingemar Johansson
Colin Perkins
Piers O’Hanlon
Ken Carlberg
Changes Since -01

- Clarified that congestion response can be sender or receiver based, and that application awareness of ECN is expected.
- Expanded use of RFC 2119 language.
- Updated Section 6 on processing of RTCP ECN Feedback in RTP Translators and Mixers:
 - Congestion-unaware fragmentation and reassembly
 - Media transcoders
 - Mixers
- Various editorial clarifications
Fragmentation and Reassembly

• Translators may fragment or reassemble packets, unaware of network congestion state
 • E.g., combine two VoIP packets into one

• Handling of ECN bits for RTP packets follows RFC 3168
 • Split → copy ECN marks
 • Combine → pick worst ECN mark

• Need to specify how RTCP is processed in the translator
Fragmentation and Reassembly: RTCP

- Determine the sequence number range for post translation packets
- Derive pre-translation sequence number range
- Calculate ratio of packets across translator:
 \[R = \frac{\text{numTrans}}{\text{numOrig}} \]
- Rewrite extended RTP sequence number and scale counters by \(R \), to match translation

- Rounding may be needed if scaling leads to non-integer counter values
 - Try to ensure sum of counters matches \(\text{numOrig} \) after scaling
 - Try to ensure no non-zero counter is rounded to zero – avoid losing events
 - If these goals conflict, avoiding rounding to zero more important

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

+++++++++++++++++++++++++		+++++++++++++++++++++++
	Extended Highest Sequence Number	Lost packets counter
+++++++++++++++++++++++++		+++++++++++++++++++++++
	CE Counter	not-ECT Counter
+++++++++++++++++++++++++		+++++++++++++++++++++++
	ECT (0) Counter	ECT (1) Counter
+++++++++++++++++++++++++		+++++++++++++++++++++++

+++++++++++++++++++++++++		+++++++++++++++++++++++
Fragmentation and Reassembly: RTCP

Questions and open issues:

- Is this scaling meaningful?
 - Believe so, if the level of congestion in the network is primarily driven by the number of packets sent. We assume this is the case where such translators are deployed
- ECN nonce reports are not translated
 - But they’re not meaningful, since they relate to particular RTP packets that don’t exist on the other side of the RTP translator
ECN Processing in Media Transcoders

- Transcoders are RTP translators
 - No SSRC; invisible to other RTP-layer entities
- Interpose into the RTCP session
 - Generate RTCP ECN feedback to the sender, as if it were the media receiver
 - Process RTCP ECN feedback received from the receiver, as if it were the media sender
 - Two separate congestion control loops run:
 - Between sender and transcoder
 - Between transcoder and receiver
 - MUST NOT forward RTCP ECN feedback across the transcoder, since the ECN feedback for one control loop is not relevant to the other
ECN Processing in Mixers

- An RTP mixer acts as an endpoint for ECN purposes
 - Treats all paths independently
 - For each path:
 - Negotiate capability and check path support
 - Generate RTCP ECN feedback for outgoing stream
 - Respond to ECN feedback from receiver, run congestion control loop
 - Possible that some paths support ECN, others don’t

- MUST NOT forward RTCP ECN feedback across the mixer, since the ECN feedback for one path is not relevant to the other paths
Open Issues and Next Steps

• Feedback on RTCP ECN feedback handling from the group

• To do in next version:
 • Clarify how ECN is used in layered sessions
 • IANA considerations and assign parameters
 • Add SDP signalling example

• Aiming to be ready for WG last call by IETF 79