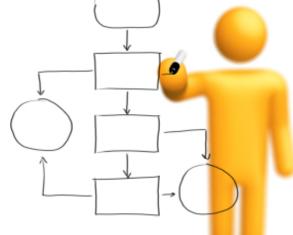
Interactive Communication Systems (ICS) EBERHARD KARLS UNIVERSITÄT Wilhelm-Schickard Institute - Dr. Christian Hoene TÜBINGEN

IETF Audio Codec: Quality Testing

Christian Hoene, Universität Tübingen Michael Knappe, Juniper Networks

© 2010 Universität Tübingen, WSI-ICS



Contents

- Introduction / Purpose of Presentation
- Background to Quality Testing and Codec Standardization
 - o "Design of an IP Phone" signal path walkthrough
 - o Subjective Tests
 - o Objective Tests
- o 'Realistic' testing and potential pitfalls
- Recommendation for a streamlined workflow of required characterization testing
- Test house volunteers / recommended signal chain
- Potential future liaisons (outside WG scope)

Introduction

- In conjunction with codec development activities, the codec WG will also specify a workflow for codec characterization
- Worthwhile to broadly review current subjective and objective evaluation techniques

- Narrow the evaluation scope to tractable WG activities
 - Goal 1: Agree upon characterization workflow istockphoto.com
 - o Goal 2: Sign up testing volunteers

Why Codec Characterization?

Addresses the questions

- Does it fulfill the requirements?
- o Is it free of major bugs?
- How does the codec perform in a real setting?
 - Needed for network planing
 - o codec adaptation
 - o selection amoung standardized codecs
 - o advertising
 - о ...
- Ensure the high quality of the IIAC standard
- Do quality testing!

Where does quality testing have an impact?

During...

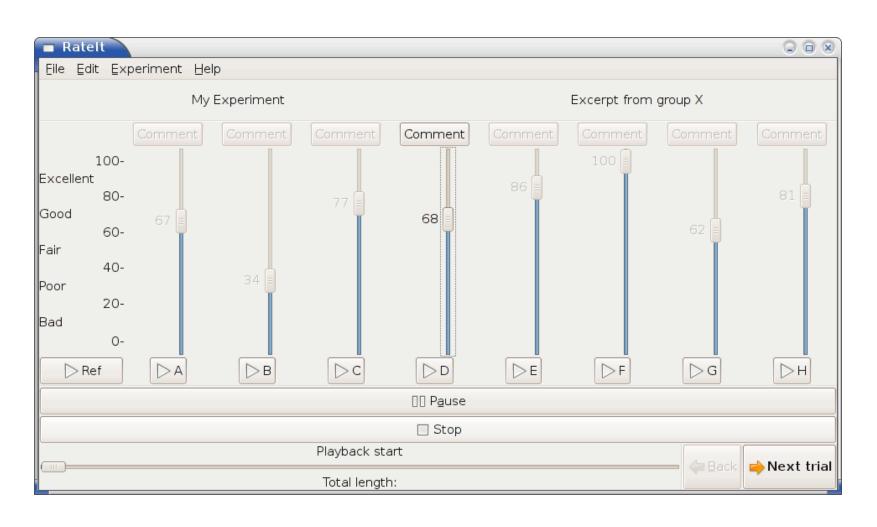
- 1. The requirement definition stage
 - Definition of scope and design goals
- 2. Codec development
 - o Inventing and iterating codec algorithms
- 3. Codec selection
 - Comparing different codec contributions
- 4. Codec standardization
 - o Describing the codec in absolute and/or relative terms
- 5. Qualification
 - Similar to 4, understanding the performance of the codec
- 6. Implementation Testing
 - o Testing codec implementations for 'correctness'
- 7. Conformance Testing
 - o Checking codec implementations for interoperability

- 1. The requirement definition stage
 - o not required for current codec scope
- 2. Codec development
 - Understanding the impact of different design decisions
- 3. Codec selection
 - o emphasis on WG collaboration and consensus
- 4. Codec standardisation
 - o emphasis on WG collaboration and consensus
- 5. Qualification
 - o important guidepost for codec 'advertising'
- 6. Implementation Testing
 - o ensure software quality
- 7. Conformance Testing
 - o Ensure interoperability

Who needs the quality test results?

- o Codec developers
 - Which algorithm/parameters to select?
- o Equipment manufacturerrs
 - Which codec shall we implement or include?
- o Network planning
 - How much bandwidth do we need for good quality?
- o VoIP applications/rate control
 - How to parameterize the codec to work ideally under the current transmission conditions?
- o End users
 - o Ingredient branding: "IETF Codec Inside"

- o Standardized at ITU-R and ITU-T SG12
- ITU-T P.800: Absolute Category Scale (ACS)
 - Having 5, 11, or more categories.
 - o Classically used for speech (ACR-5, MOS) and video (ACR-11)
 - o Fastest method
- ITU-R BS.1116-1:
 - o Most precise (for high quality audio tests)
 - o Used for development of G.719
- ITU-R BS.1534-1: Mushra Testing
 - o For intermediate quality
 - o Faster than BS.1116


MUSHRA

- MUltiple Stimuli with Hidden Reference and Anchor
- o ITU-R BS.1534-1
- Recommended for assessing 'intermediate audio quality'
- Uses both a known reference and hidden reference, along with hidden anchors, including a 3.5 kHz bandlimited version of reference to pull the scale closer to an absolute measure
- Requires statistically fewer subjective participants to generate a significant score

MUSHRA screenshot

• Ratelt tool - thanks Jean-Marc!

- Telephony is bidirectional.
 Listening-only tests do not cover interactivity.
- Conversational Tests are more realistic as compared to listening-only tests
 - o Because they also consider delay, echos, ...
- o Thus, conversational tests might needed
 - Defined in ITU-T P.800 for speech only
 - o Uses ACR-5 (MOS)

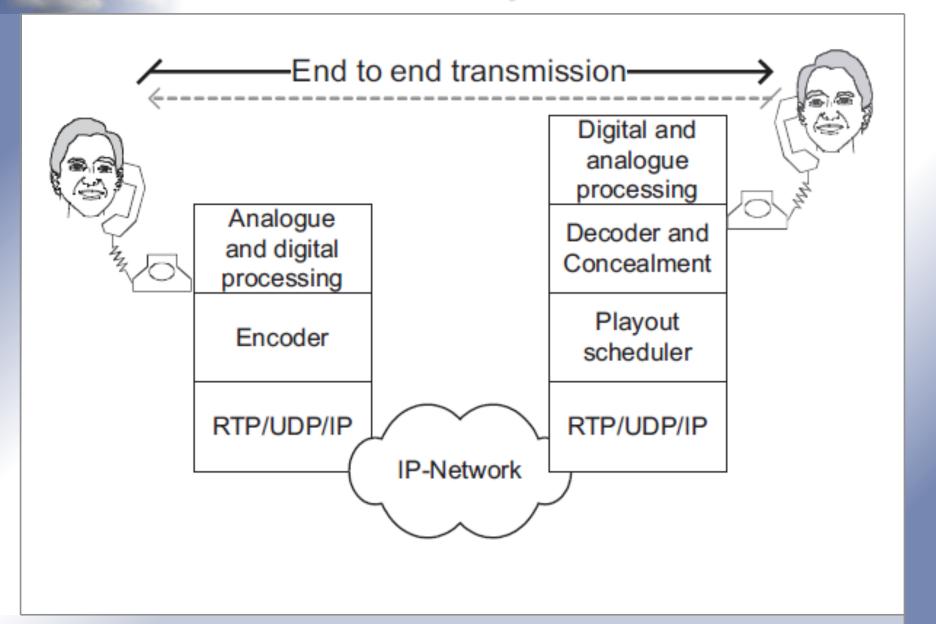
BUT

- No tests for distributed ensemble performances
- \odot No tests for teleconferencing scenarios, yet

- o Subjective tests are expensive and time consuming
- o Objective (instrumental) tests try to predict human rating
- PESQ: Perceptual Evaluation of Speech Quality
 - o ITU-T P.862
 - o listening-only tests (MOS)
 - Correlation R=0.94 for known kinds of distortions
- o POLQA: Perceptual Objective Listening Quality Analysis
 - Updating PESQ
 - From narrowband till superwideband
 - o Also time stretching/shrinking
- o PEAQ: Perceptual Evaluation of Audio Quality
 - o ITU-R BS.1387-1
 - Listening-only tests (ACR)
 - o Packet loss?
 - No time variations!

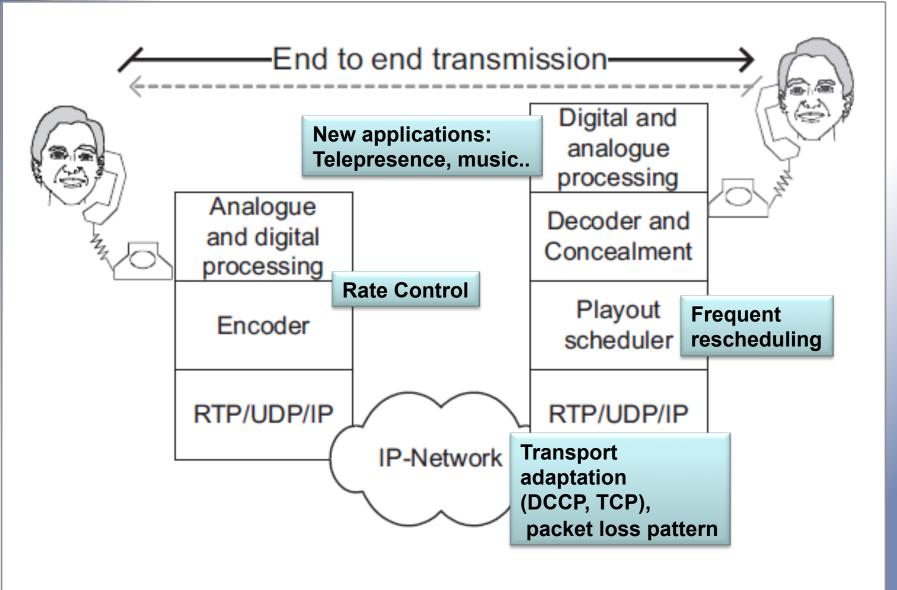
Instrumental Testing Methods (cont)

- Objective testing unreliable for unknown distortions
 - Without subjective testings and mapping to subjective ratings.
 - $\circ\,$ New codec introduces a kind of new distortion
- After successful verification, objective algorithms are assumed to give stable and reliable ratings
- Define mapping from objective to subjective ratings


Measuring Quality of Experience

 "The overall acceptability of an application or service, as perceived subjectively by the end-user." [ITU-T P.10/G. 100]

Thus:


- 1. The acceptability and subjective quality impression of **end-users** have to be measured.
- The IIAC codec has to be tested as part of entire telecommunication systems. It is not sufficient to just the codec's performance in a stand-alone setup.
- 3. The circumstances of particular **communication scenarios** have to be considered and controlled because they might have impact of the human rating behavior.

Telecommunication System: IP Phone

Modern IP Phone

Codec Testing in Realistic Environments

- o Applications
 - o New applications will have different requirements
 - o Use cases require different qualities
- Acoustic processing
 - o Presence of echo cancelation, automatic gain control
- Playout Buffering
 - o Fixed or adaptive? Stretching, shrinking?
- o IP Transmission
 - o Impact packet transmission
 - o Loss patterns
 - o Delay distribution
 - o Interaction between rate control and network/other flows?

Available/Unavailable Test Methods

- o Applications
 - Speech conversation (different degrees of interactivity)
 - Audio listening test
 - o But: No test methods for music playing or telepresence...
- Acoustic processing
 - o Typical ignored
 - o Reference room / headset / headphones standardized
- o Playout Buffering
 - o P.OLQA can measure playout time adjustments
 - But: No agreed standard playout buffering algorithm
- o IP Transmission
 - o ITU-T G.1050/TIA-921 simulates loss and delays
 - o modifies packet traces (PCAP) to consider delay and loss
 - o But: No interaction with rate-control
 - But: No simulation of DCCP

- We need to perform subjective testing
- BUT exhaustive formal subjective tests are not possible from either a cost or "time-to-market" perspective...
- We need an iterative and continuous test methodology based on shared testing responsibilities and broad user feedback

Recommendation

Continuous testing workflow:

- o Phase: Development
 - Iterative design decisions based on expert opinion and informal subjective listening tests (MUSHRA)
- Phase: Characterization (using reference implementation at 3-5 volunteer ,test houses')
 - Use one method for all listening-only tests, e.g. MUSHRA
 - Latency measure [ms] to cover conversations impact re G.114
 - Conduct professional tests on a few codec operational points (e.g. complexity estimation, tone passthrough)
 - Important to note that in testing we are not mandating specific performance for acceptance, but as a benchmarking tool to guide consensus, or re-iteration as the WG deems necessary
 - Also encourage ,alpha' implementation for in-situ network testing
- o Phase: Implementation and Conformance
 - Use objective tools (PESQ, PEAQ, P.OLQA) for bug finding and conformance tests (after mapping to MUSHRA values)

- Asking for 3-5 volunteer companies to become codec 'test houses'
- Agree to provide recommended testing signal chain and audio environment
 - Expected 5 to 10K budget
- Agree on audio test material (speech, music)
- Agree to sign up subjective test volunteers and perform codec tests at designated testing periods and provide results to the codec WG in a timely manner
- Work in a committee fashion to generate a collaborative test report that identifies test discrepancies and an overall composite result

Recommended test chain

- Quiet listening environment at NC25 (approx 35 dBA) e.g. ISOBOOTH
- o Standardized sample preparation
 - o 8, 16, 24, 32 etc to 48 kHz / 16 bit
 - SecretRabbitCode
- o MUSHRA assessment tool
 - o Ratelt
 - o MUSHRAM (Matlab based)
- o High quality D/A
 - o e.g. Benchmark DAC, Metric Halo ULN-2, Apogee MiniDAC
- High quality headphone amp and playback level calibration
 - Decent headphone amp frequently included with good D/A
 - Playback levels measured via Etymotic in-ear mic
- High quality headphone (e.g. AKG 240DF, Senn HD600)

Sennheiser HD600

Metric Halo

Potential future IETF liaison activities

- Cooperation with TIA to developed a realistic, real-time IP packet/loss simulation/emulator
 - Especially, the interactivity (between IP simulator and rate control) is still a missing feature
 - Might be easy added in the next version of TIA-921 aka ITU-G.
 1050
- o Define reference playout buffer
 - o Used for tests with IP traces, simulation
 - o Bound in respect of lower quality
- ITU-T Study Group 16 has started to defined playout scheduler for their codecs

Potential future IETF liaison activities (cont)

- Ask (members of) study group 12 for help to evaluate perceptual quality
 - Supporting time varying quality
 - o Supporting playout rescheduling
 - o Supporting speech and audio
- Use in-situ tests as early as possible.
 - $\odot\,$ To find bugs
 - To get quality feedback
 - o To test codec under realistic conditions
- However, cannot be applied for formal qualitfication or conformance testings
- Ask Study Group 12 for help on formal in-situ testing...

Summary

- Comprehensive testing of codec is challenging
 - o Potential new requirements
 - $\circ\,$ Need for realistic operational settings
- Streamlined codec development and qualification workflow
 - $\circ\,$ Test the "running systems" with real users and experts
 - Qualify via multi-site MUSHRA, latency, and complexity estimates at 3-5 volunteer companies, using a reference implementation. Also, in-situ implementation testing desired.
 - results used to assist consensus or reiteration, not as a process gating mechanism
- $\odot\,$ Future cooperation with TIA and ITU-T $\,$
 - To develop formal testing and listening procedures
 - Long term relationship and knowledge sharing (e.g. network impairments)