

Opportunistic Web Access via WLAN Hotspots

Mikko Pitkänen, Teemu Kärkkäinen, and Jörg Ott

DTNRG, 2010-07-30

Agenda

- Introduction: Urban Pedestrians and Hotspot Access
- Opportunistic Web Access
- DTN-based Resource Retrieval
- Routing, Urban Mobility, and Geographic Awareness
- Simulation Results
- Practical Implementation
- Conclusions

Intro: Opportunities for Hotspot Access

- Mobile phones more pervasive than cellular connectivity
 - Affordable cellular connectivity in home operator network only

BUT, there are alternatives; we propose to use:

WLAN Hotspots

Cooperation

DTN based model

- bundles
- hop-by-hop

example: Wippies hotspot locations in Helsinki

Mobile Users, Hotspots, the Internet

Internet connectivity

Aalto University

opportunistic contacts

Delay-tolerance, Mobility and Cooperation

- Delay-tolerance, mobility and cooperation overcome:
 - incomplete coverage (eventually nodes move to hotspots)
 - partial access to hotspots (other nodes can relay to hotspots)
- Can benefit also cellular data services
 - helps to offload operations that are not time-critical
 - always possible to fallback to cellular data if available
- Mobile users in an urban setting
 - share a lot: content interests, routes...
 - mobility limits: streets, routes, walking speed
 - · node encounters different from random way point model
- Hotspots are stationary and thus add structure

Opportunistic Web Access

- Web access over opportunistic contacts
 - WLAN and Bluetooth contacts are available and fast
 - but, multi-hop paths are not stable (MANET routing fails)
- Web traffic normally uses multiple round-trips
 - but, Web retrieval (i.e., GET-RESP) can be done in a single RTT
- Resources can be bundled in a meaningful manner
 - web page (e.g., index.html + pictures) in single bundle
 - supports caching and cooperation especially well
 - practical implementations exists (MHTML)
 - standard mechanisms available for client and servers
 - illustrated in the next slide

Example: Top 50 Web Pages (Finland)

- - also long delays occur

Routing, Urban Mobility, and Geographic Awareness

- Several routing protocols exists for DTN
 - single-copy, multi-copy, statefull, stateless
- Users on the streets are mobile
 - move according to roads and routes
 - speed fairly predictable
- Hotspots are static
 - thus provide implicit geographic location
 - good candidates for backwards routing
 - slow walking speed keeps nodes close to request location

System Architecture for Opportunistic Web Access

Simulations

- ONE simulator for urban mobility and DTN routing
 - modeling 140 urban pedestrians (tourists) in downtown area
 - users retrieving Web resources with shared interests
- WLAN hotspots located at street side
 - locations according to real geographic data (Wippies)

Simulation results (I)

Retrieval performance with spray-and-wait, 1 vs. 3 closest hotspots responding

Urban mobility leads to better response rates, than random walks in same area

Closest hotspot good for routing back, spreading further not directly helpful -> but does benefit indirect access via capable mobile nodes

Simulation Results (II)

Retrieval delay with TTL=40min, 1vs. 3 closest hotspots responding

Majority of responses arrive early

Practical Implementation

- Web browser with delay-tolerance
 - create request bundles, parse responses, display content..
 - implementations: iPhone, Android

Conclusions

- WLAN hotspots appealing for opportunistic web access
 - free Internet while travelling, offloading background tasks
 - can help in areas where other options fail
- Has been implemented and tested to work
 - validation conducted on an emulated testbed
- Gradual deployment possible
- More details in the paper, including
 - indirect access via mobile nodes only
 - caching in gateways and mobile nodes
 - validation set-up and results
 - deployment considerations

