HIP support for RFIDs

Pascal.Urien@telecom-paristech.fr
About RFIDs

- What is an RFID?
 - An RFID is an electronic device that delivers an identity (ID) thanks to radio means.

- Link with the Internet Of Things (IoT)
 - A Thing is associated with a RFID

- RFID have limited computing resources
 - Electronic chip, whose area ranges from 1mm² to 25mm²
 - RFIDs are usually powered by readers.
 - Very low power consumption.

- Objective of this draft
 - Defining **a protocol for RFIDs**, compatible with the IP ecosystem.
 - Enforcing **strong privacy**, i.e. no information leakage for unauthorized ears.
 - Managing **secure channel** with RFIDs (Optional)
 - **Crypto Agility**: cryptographic procedures adapted to RFIDs computing resources.
Protocol Overview

RFID READER PORTAL

---+-- --+-- ---+---

! START ! !
!<---------------! !
!! !
!!
!!
!!
!!

Fix or
NULL value

Random value

Random value

Random value

Mandatory

Optional ESP Dialog

Optional ESP Dialog

HMAC(KI, I2-T)

HMAC(KI, R2-T)
About RFIDs

- An RFID is a slice of silicon whose area is about 1 mm\(^2\) for components used as cheap electronic tags, and around 25 mm\(^2\) for chips like contact-less smartcards inserted in passports.

- We divide RFIDs in two classes,
 - First comprises electronic chips based on cabled logic circuits.
 - Second includes devices that embed CPU and memories (RAM, ROM, E\(^2\)PROM) such as contact-less smart cards.

ISO18000-3 Mode2 RFID Chip

ISO 14443 Contact-less Smart Card
Some physical standards

- The ISO 14443 standard introduces components dealing with the 13.56MHz frequency that embed a CPU and consume about 10mW; data throughput is about 100 Kbits/s and the maximum working distance (from the reader) is about 10cm.

- The ISO 15693 standard also uses the same 13.56 MHz frequency, but enables working distances as high as one meter, with a data throughput of a few Kbits/s.

- The ISO 18000 standard defines parameters for air interface communications associated with frequency such as 135 KHz, 13,56 MHz, 2.45 GHz, 5.8 GHz, 860 to 960 MHz and 433 MHz.
 - The ISO 18000-6 standard uses the 860-960 MHz range and is the basis for the Class-1 Generation-2 UHF RFID, introduced by the EPCglobal consortium.

- NFC standards for mobile phones.
 - Based on ISO 14443.
Privacy issues for RFIDs

- **ID MUST** be protected
- **ID** is a solution of $f(r_1, r_2, ID)$

![Diagram]

Example

- Many proposal in the scientific literature
 - Example: $f(r_1, r_2, ID) = \text{hash } (r_1 \mid r_2 \mid ID)$

The RFID runs a modified version of HIP

- In HIP, HIT is a fix value
 - HIT = hash(Public-Key)
 - For RFID this fix identifier is a privacy issue
- In HIP-RFID
 - HIT-RFID is a random value
 - On the mailing list it has been suggested that only part of the HIT could be a random value, for example 96 bits for IPv6 addressing scheme compatibility.

The RFID Reader is an IP node

- It acts as a docking host for HIP RFIDs
- The Reader is not able to solve the \(f \) equation
- The identity solver entity is located in a node called the PORTAL

HIP dialog between the RFID and the Portal

- HIP packets MAY be encapsulated by a HAT (HIP Address Translation) layer.
 - HAT could be an UDP transport of HIP packets
 - On the mailing list it has been suggested that this name is not adequate
HIP-RFID Architecture

RFID Reader Portal

HIP ID

RFID-MAC

RFID-PHY

SPI-I HAT IP MAC PHY

SPI-R HAT IP MAC PHY

Identity Solver

ID

8/12 Pascal URIEN, IETF 78th, Tuesday 27th July 2010, Maastricht, Netherland
HIP -RFID Overview

Modified BEX exchange
- Negotiation of the security scheme (HIT-T-TRANSFORM attribute).
- Third and fourth message are MACed (typically with a HMAC function)
- Fourth message is optional, only mandatory when a secure ESP channel has been negotiated.
 - This is not yet detailed in this draft
 - ESP MAY be used for read write operation.

The HIT is a random number
RFIDs never expose their identity in clear text, but hide this value (typically an EPC-Code) by a particular equation (f) that can be only solved by a dedicated entity, referred as the portal.
- \(f(r_1,r_2, ID) \)
- \(f \) can be anything that works
- An integrity key is computed from \(KI AUTH KEY = g(r_1,r_2,ID) \)

HIP exchanges occurred between RFIDs and PORTALs; they are shuttled by IP packets, through the Internet cloud.
BEX Example, with T-Transform = 0001

RFID

ID 0123456789abcdefcdab

Portal

Random Value
Implicit Portal
I1-T

List of Crypto Suite
R1-T

Working Crypto Suite
I2-T

f(r1,r2,ID)

HMAC(KI-AUTH-KEY, I2-T)
T-Transform

T-TRANSFORM 0001 (HMAC)

- **K = HMAC-SHA1(r1 | r2, ID)**
- **F-T = HMAC-SHA1(K, CT1 | "Type 0001 key")**
 - CT1 = 0x00000001 (32 bits)
- **KI-AUTH-KEY = HMAC-SHA1(K, CT2 | "Type 0001 key")**
 - CT2 = 0x00000002 (32 bits)

T-TRANSFORM 0002 (TREE)

- **F-T = H1 | H2 | Hi | Hn**
 - Hi = HMAC-SHA1(r1 | r2, Ki | CT1), or
 - Hi = HMAC-SHA1(r1 | r2, Ki | CT2)
 - CT1 = 0x00000001, CT2 = 0x00000002
 - Notation: \(H_{i}^{CTk} \), \(k=1,2 \), \(i=1...n \)
- **KI-AUTH-KEY = HMAC-SHA1(K, CT1 | "Type 0002 key")**
 - K = HMAC-SHA1(r1 | r2, EPC-Code)
 - CT1 = 0x00000001 (32 bits)
Questions?

- Ideas for T-TRANSFORMs?
- What structure for the HIT-RFID?
- HAT name and functionality?
- ESP Secure Channel?