MulTFRC:
TFRC with weighted fairness

draft-irtf-iccrg-multfrc-00

Michael Welzl, Dragana Damjanovic,
Stein Gjessing

ICCRG @ 78th IETF Meeting
Maastricht, Netherlands
30 July 2010



What is MulTFRC?

e Like MulTCP: a protocol that is N-TCP-friendly

- NER"
— Larger range of possible values for N than for others,
e.g. MulTCP and CP

— Yields flexible weighted fairness (e.g. priorities
between users, or between flows of a single user)

e Based on TFRC

— Easy to implement as an extension of TFRC code

I”

— Change the equation + measure “real” packet loss



Research background

* Ph.D. thesis of Dragana Damjanovic
(now finished and evaluated with best marks)

— Equation derivation: SIGCOMM poster, tech. rep.,
paper with derivation + MulTFRC under submission

— MUITFRC: CCR paper

e Extensive evaluations: equation validation, MulTFRC tests,
both in simulations and real life

— MUITFRC also successfully demonstrated for Europe-China file transfer
at final review of European IST FP6 STREP project “EC-GIN”

e All documentation and code available from:
http://heim.ifi.uio.no/michawe/research/projects/multfrc/



Draft history

draft-welzl-multfrc-00 presented at ICCRG meeting, IETF 75 in
Stockholm

— General feedback positive (but not much feedback)

draft-welzl-multfrc-01 presented at DCCP meeting, IETF 76 in
Hiroshima
— General feedback positive (but not much feedback)

— Decision: this is more appropriate for ICCRG

ICCRG reviews: Wes Eddy, Lachlan Andrew, Dirceu Cavendish

— Main criticism: algorithm looks complicated, might be a problem to
implement (overflows etc.)

— Addressed in this update. Dirceu already said OK



Overview of changes

1. Syntactic change in the algorithm that
computes the sending rate, X_Bps

2. Special treatment of the case that the loss
event rate is one

3. Arguing that there will be no underflow,
overflow or rounding errors in the algorithm
that calculates X_Bps



Section 2.1: Change in X_Bps

“Syntactic” change in the algorithm that computes
the sending rate, X_ Bps:

If (g*z/(x*R) >= N) {
q=N;
} Else {
q = q*z/(x*R);
}

changed to:

g = min(q*z/(x*R),N);



Section 2.2: p==1

When all packets are lost (the loss event rate, p, is one) the
algorithm for computing X_Bps will perform a division by O.
The case p==1 is now treated as a special case before the
algorithm is invoked:

The procedure for updating the allowed sending rate in section 4.3 of
[RFC5348] ("action 4") contains the statement:

Calculate X_Bps using the TCP throughput equation.

which is replaced with the statement:

If (p==1) { . _ Note, small mistake:
X_Bps=s*N/t_mbi; | s missing in the current draft. fixed in the next update.
} Else {

Calculate X_Bps using the algorithm defined in section 3.

}

s: Nominal packet size in bytes. t_mbi: Maximum RTO value of TCP (constant)



Appendix: The calculation of X_Bps

* Show that whenp !=0andp =1,
our algorithm for calculating X_Bps

does not give underflow, overflow or rounding
errors.

* The appendix goes through all calculations
in the algorithm and shows that all operations
have valid operands and produce valid results
(when the other parameters also have proper
values (like s, R, b, ...)).




Next steps

e Going to submit a minimal update
immediately after this meeting

— Would like to submit this for IRSG review soon
afterwards

— Please provide feedback fast

* Planned future work: DCCP CCID specification,
maybe also a small-packet variant



