News from CAIA’s NewTCP Project
Delay-based TCP and improved instrumentation of FreeBSD’s TCP stack

Presented by Michael Welzl on behalf of:

David Hayes, Lawrence Stewart

{dahayes,lastewart}@swin.edu.au

Centre for Advanced Internet Architectures (CAIA)
Swinburne University of Technology
FreeBSD As A Research Platform

- Modular congestion control
 - In svn project branch, coming to a FreeBSD release soon
 - Available as a stand alone patch on the NewTCP website
 - BSD licenced NewReno, HTCP, CUBIC, Vegas, HD & CHD implementations available
 - New v0.10.0 release contains many improvements and paves way for shared CC between multiple transports e.g. TCP and SCTP
 - Supported by Cisco Systems

- KHELP and Enhanced RTT
 - Kernel Helper (KHELP) framework makes modularising “stuff” easy
 - Enhanced RTT (ERTT) KHELP module hooks TCP stack to maintain an RTT estimate appropriate for CC use
 - Used by Vegas, HD and CHD CC modules
 - ERTT supported by Cisco Systems
FreeBSD As A Research Platform

- Statistical Information for TCP Research (SIFTR)
 - FreeBSD kernel module to gather TCP connection data as CSV
 - Some similarity to Web100 but event driven and more variables
 - v1.2.3 has been integrated into FreeBSD and will appear in 8.2+
 - Supported by Cisco Systems and the FreeBSD Foundation

- Deterministic Packet Discard (DPD)
 - Adds ’pls’ (packet loss set) option for dummynet pipes
 - e.g. ipfw pipe 1 config pls 1,5-10,30 would drop packets 1, 5-10 inclusive and 30

- Dummynet Forensic logging support
 - Log pipe/queue state on each packet event as CSV

- TCP stack improvements including RFC 3465 & reassembly queue autotuning
 - Supported by the FreeBSD Foundation
Delay-based Congestion Control

- Implementation of the algorithm proposed by Budzisz et al. [1] (we call it HD)
 - Probabilistic backoff based on inferred path queueing delay

Figure: Per-packet backoff probability as a function of estimated queueing delay[1]
Delay-based Congestion Control continued

- “CHD”: Enhanced HD (Hayes and Armitage [2])
 - Per RTT backoff decisions (for scalability and fairness)
 - Tolerance of non-congestion related packet loss
 - Improved coexistence with loss based algorithms in lightly multiplexed environments.

Figure: Interaction of the shadow window (s) and the congestion window (w) when competing with loss based CC flows.
Figure: Comparison of the goodput of NewReno, HD, and CHD when there are non-congestion related losses
(10 Mbps bottleneck, 40 ms baseRTT, 100 ms queue at the bottleneck)
Delay-based Congestion Control continued

- Issues with inferred queueing delay CC signals:
 - Unfairness when BaseRTT estimate is wrong
 - Setting queueing delay thresholds (depends on network path)
- We have been revisiting the idea of delay gradient as a congestion signal (CDG – Hayes and Armitage [3]).
- Why?
 - Does not require an accurate estimate of baseRTT
 - Thresholds are less dependent on network path
- Hybrid
 - Combining the strengths of a threshold system based on inferred queueing delay, with the strengths of a delay-gradient approach may provide a more robust mechanism.
Further Information

- Contact
 - David Hayes <dahayes@swin.edu.au>
 - Lawrence Stewart <lastewart@swin.edu.au>
 - Grenville Armitage <garmitage@swin.edu.au>

- Links
Acknowledgements

- Cisco Systems

- The FreeBSD Foundation
References

