A Simulation Study on Increasing TCP's IW - Preliminary Results

Ilpo Järvinen, Aki Nyrhinen, Aaron Yi Ding, Markku Kojo

Department of Computer Science University of Helsinki

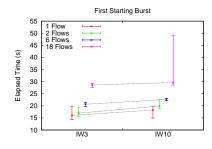
IETF78 / Maastricht Jul 30th 2010

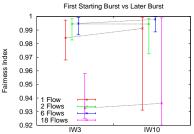
Introduction

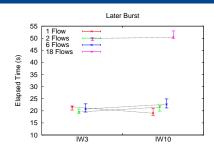
- Simulation study to evaluate effects of increasing IW from 3 to 10 (proposed in draft-hkchu-tcpm-initcwnd-01.txt)
- Focus on (typical) slow/moderate bit-rate wireless links like environments
- Very very preliminary results
 - No in-depth analysis done (yet)
 - Contains only a limited set of all results

Test setup

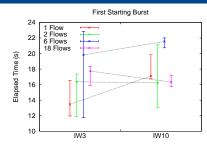
- Links (bw/one-way propagation delay)
 - EGDE 160kbps/250ms, BDP = 7 pkts (6.7)
 - HSPA 2Mbps/70ms, BDP = 24 pkts (23.3)
 - LTE 50Mbps/15ms, BDP = 125 pkts
 - No wireless errors, nor allocation / error related delays considered
- 11ms propagation delay from sender to wireless link
- Buffer sizes
 - BDP (Bandwidth Delay Product)
 - Large (50 pkts, EDGE and HSPA only)
 - Dummy scaling for LTE yields to 933 packets (1.3MB)!
- A later starting burst of 1, 2, 6 or 18 simultaneous TCP flows (total 180kB) competing against:
 - A similar burst (another 180kB)
 - Bulk TCP
- 100 replications per case, start time of the later burst varied

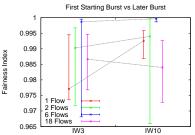


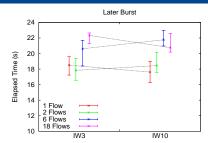

Metrics Used


- The elapsed time reports the elapsed time of the flow that completes last within the burst (25/75th percentile and median shown)
- Fairness calculated according to Jain's Fairness Index: fairness = $\frac{(\sum x_i)^2}{(n \cdot \sum x_i^2)}$

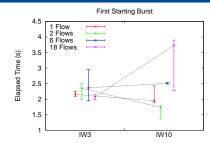
EDGE 160kbps/250ms, BDP Buffer = 7 pkts, n+n Flows

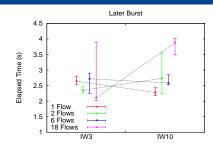


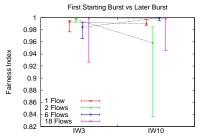



- First starting burst yields
- Later burst improved only with 1+1 flows
- Median of fairness improves but instability increases

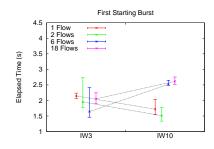
EDGE 160kbps/250ms, Large Buffer = 50 pkts, n+n Flows

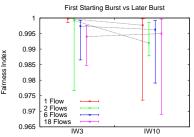


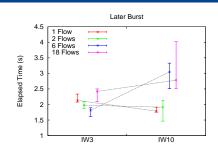



- First starting burst yields
- Later burst improves only with 1+1 flows
- Fairness improves except for 18+18, also instability increase with 2+2

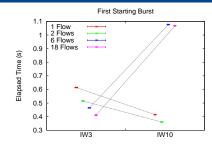
HSPA 2Mbps/70ms, BDP Buffer = 24 pkts, n+n Flows

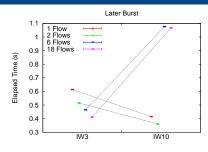


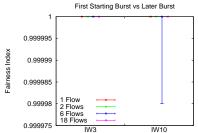



- 1+1 improves as previously
- With 2+2 overload causes a timeout, both elapsed time and fairness suffer (6+6 outperforms it because first starting burst is hurt more)

HSPA 2Mbps/70ms, Large Buffer = 50 pkts, n+n Flows







- 1+1 improves (but more variation in fairness), slight improvement in 2+2
- With 6+6 and 18+18 both bursts complete later

$\overline{\text{LTE 50Mbps}/15\text{ms}}$, BDP Buffer = 125 pkts, n+n Flows

- 1+1 and 2+2 improve
- IW10 with 6+6 and 18+18 cause losses, reduces performance
- Fairness between bursts very good

Summary, Workload n+n Flows

Elapsed time										
	First starting burst				Later burst					
n+n	n1	n2	n6	n18	n1	n2	n6	n18		
edge bdp	+				+++					
edge large		-+-	+	+++	+++			+++		
hspa bdp	++-	+++	 +		+++	+	-++			
hspa large	+++	+++			+++	++-				
lte bdp	+++	+++			+++	+++				
Fairness within burst										
n+n	n1	n2	n6	n18	n1	n2	n6	n18		
edge bdp	n/a		+	+++	n/a		+++			
edge large	n/a	-++			n/a	+	++-	-+		
hspa bdp	n/a	+		-++	n/a			—-+		
hspa large	n/a	+			n/a					
lte bdp	n/a				n/a					
Fairness between bursts (the longest flows)										
n+n	n1	n2	n6	n18						
edge bdp	-++	+	+++	-++	In each column $+$ indicates					
edge large	+++	-++	+++		improvement with IW10 for					

-++

000

In each column + indicates improvement with IW10 for 25th percentile, median, 75th percentile

hspa bdp

hspa large

Ite bdp

000

000

-00

Summary, Workload Bulk TCP + n Flows

Elapsed time									
Bulk+n	n1	n2	n6	n18					
edge bdp	++-		-+-	+					
edge large	+++	+++							
hspa bdp	+++	+++		+++					
hspa large	+++	+++							
lte bdp	+++	+++							
Fairness within burst									
Bulk+n	n1	n2	n6	n18					
edge bdp	n/a		+	+++					
edge large	n/a								
hspa bdp	n/a			+++					
hspa large	n/a	+							
lte bdp	n/a								

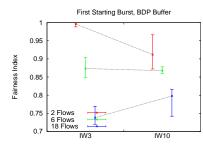
In each column + indicates improvement with IW10 for 25th percentile, median, 75th percentile

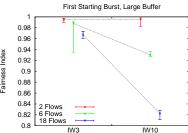
Conclusion

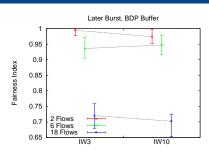
- With small number of TCP flows, IW10 improves performance
- With larger number of flows, IW10 tends to decrease performance
 - Regardless of IW, too many flows clearly results in suboptimal performance
- Fairness for later starting traffic improves with IW10
- Fairness between flows starting within a burst worse with IW10

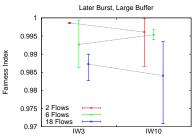
Future Work

- In depth analysis of the results
- Analysis of workload with mixed filesizes (tests run already)
- Include other variables
 - Initial RTO
 - Longer delay on the Internet side
 - Possibly others...
- Testing in real wireless networks planned

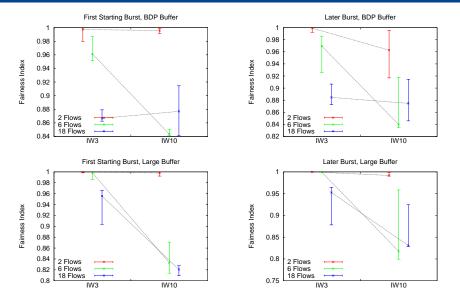

Discussion




Backup Slides



Fairness EDGE 160kbps/250ms, n+n Flows



HSPA 2Mbps/70ms, n+n Flows

