Managing Long-Term Keys for Routing Protocols

July 29, 2010 Russ Housley Tim Polk

Drafts

- Database of Long-Lived Cryptographic Keys
 - <draft-housley-saag-crypto-key-table-02.txt>
- Routing Authentication Using A Database of Long-Lived Cryptographic Keys
 - <draft-polk-saag-rtg-auth-keytable-03.txt>
- The former defines a conceptual model, the latter describes the model's application to routing protocols

Fundamental Concepts

- Manual key management is today's reality in routing protocols
 - Future key establishment protocols must co-exist with manual keying
- If Key establishment is performed in separate protocols, rather than a handshake in routing protocols, there is no perceptible difference to the routing protocol (RP).

Fundamental Concepts, II

- Modeled as a database or table of shared keys that are available to the routing protocols
 - Textual description of database entries is consistent with current operational practice
- The keytable is a conceptual resource that permits long-term key management to be separated from routing protocol design
 - Protocol designers can concentrate on session-specific key management (e.g., derivation of session keys, rollover, etc.) and cryptographic agility.

Non-Goals

- These documents do not impose any implementation requirements
 - If this conceptual model is adopted, they could be implemented with per-RP keytables or a single keytable.
- These documents do not specify an API.

Database

- Database is characterized as a table, with a row for each key
- Identifies 11 columns for the key and its attributes
- Describes rollover between long-lived keys

Database Columns (1 of 2)

LocalKeyID

 A 16-bit integer in hexadecimal, unique in the context of the database. The high order bit differentiates pairwise and group keys.

PeerKeyID

- For pairwise keys, the peerKeyID field is a 16 bit integer in hexadecimal provided by the peer or "unknown" if the peer has not yet provided this value.
- For group keying, the PeerKeyID field is set to "group", which easily accommodates group keys generated by a third party.

KDF

 Indicates which key derivation function (KDF) is used to generate short-lived keys (or "none" when the long-term key is used directly).

KDFInputs

Used when supplemental public or private data is supplied to the KDF.

AlgID

Indicates which cryptographic algorithm to be used with the security protocol.

Database Columns (2 of 2)

- Key
 - A hexadecimal string representing a ling-lived symmetric cryptographic key.
- KeyDirection
 - Indicates whether this key may be used for inbound traffic, outbound traffic, or both.
- NotBefore
 - Specifies the earliest date and time at which this key should be considered for use.
- NotAfter
 - Specifies the latest date and time at which this key should be considered for use.
- Peers
 - Identifies a peer system or set of peer systems
- Protocol
 - Identifies the security protocol where this key is to be used to provide cryptographic protection.

Consistency with Current RPs

Based on draft-wei-karp-analysis-rp-sa-00:

- Current RPs use a subset of the key attributes in the keytable except OSPFv2
 - OSPFv2 specifies four time/direction attributes
 - {Key Start Accept, Key Start Generate, Key Stop Generate, Key Stop Accept}
 - the table supports two time attributes and one directional attribute
 - {KeyDirection, NotBefore, NotAfter}

The Overall Model

Initiator's View

Receiver's View

KeyID Mapping

- Database specification mandates a 16-bit KeyID
- KeyID in the table may not be the KeyID used on the wire
 - Need to support more than just one security protocol
 - Allow translation to any needed format or size
 - Overlapping ranges may unnecessarily limit the total number of keys that can be maintained
- Mapping can resolve size mismatch and overcome overlapping range issues
 - Only applicable to local KeyID values
 - Peer's KeylDs are not unique in the context of the table

Initiator's View with Mapping

Recent changes and TBDs

- Recent Changes
 - Softened text regarding automated key management in routing protocols to place out of scope rather than not expected to exist
 - If such mechanisms emerge, these protocols would not have any reason to make use of this database.
 - Added brief section on database maintenance to cover key removal
- TBDs for draft-polk-...
 - Simpler examples
 - Handling simultaneous open
 - Security Considerations

Questions?