Managing Long-Term Keys for Routing Protocols

July 29, 2010
Russ Housley
Tim Polk
Drafts

• Database of Long-Lived Cryptographic Keys
 – <draft-housley-saag-crypto-key-table-02.txt>

• Routing Authentication Using A Database of Long-Lived Cryptographic Keys
 – <draft-polk-saag-rtg-auth-keytable-03.txt>

• The former defines a conceptual model, the latter describes the model’s application to routing protocols
Fundamental Concepts

• Manual key management is today’s reality in routing protocols
 – Future key establishment protocols must co-exist with manual keying

• If Key establishment is performed in separate protocols, rather than a handshake in routing protocols, there is no perceptible difference to the routing protocol (RP).
Fundamental Concepts, II

• Modeled as a database or table of shared keys that are available to the routing protocols
 – Textual description of database entries is consistent with current operational practice

• The keytable is a conceptual resource that permits long-term key management to be separated from routing protocol design
 – Protocol designers can concentrate on session-specific key management (e.g., derivation of session keys, rollover, etc.) and cryptographic agility.
Non-Goals

• These documents do not impose any implementation requirements
 – If this conceptual model is adopted, they could be implemented with per-RP keytables or a single keytable.
• These documents do not specify an API.
Database

- Database is characterized as a table, with a row for each key
- Identifies 11 columns for the key and its attributes
- Describes rollover between long-lived keys
Database Columns (1 of 2)

- **LocalKeyID**
 - A 16-bit integer in hexadecimal, unique in the context of the database. The high order bit differentiates pairwise and group keys.

- **PeerKeyID**
 - For pairwise keys, the peerKeyID field is a 16 bit integer in hexadecimal provided by the peer or "unknown" if the peer has not yet provided this value.
 - For group keying, the PeerKeyID field is set to "group", which easily accommodates group keys generated by a third party.

- **KDF**
 - Indicates which key derivation function (KDF) is used to generate short-lived keys (or "none" when the long-term key is used directly).

- **KDFInputs**
 - Used when supplemental public or private data is supplied to the KDF.

- **AlgID**
 - Indicates which cryptographic algorithm to be used with the security protocol.
Database Columns (2 of 2)

- **Key**
 - A hexadecimal string representing a long-lived symmetric cryptographic key.
- **KeyDirection**
 - Indicates whether this key may be used for inbound traffic, outbound traffic, or both.
- **NotBefore**
 - Specifies the earliest date and time at which this key should be considered for use.
- **NotAfter**
 - Specifies the latest date and time at which this key should be considered for use.
- **Peers**
 - Identifies a peer system or set of peer systems
- **Protocol**
 - Identifies the security protocol where this key is to be used to provide cryptographic protection.
Consistency with Current RPs

Based on draft-wei-karp-analysis-rp-sa-00:

• Current RPs use a subset of the key attributes in the keytable except OSPFv2
 – OSPFv2 specifies four time/direction attributes
 • {Key Start Accept, Key Start Generate, Key Stop Generate, Key Stop Accept}
 – the table supports two time attributes and one directional attribute
 • {KeyDirection, NotBefore, NotAfter}
The Overall Model

- Manual Key Installation
- Automated Key Mgmt. Protocol
- Long-Lived Crypto Keys
- Short-Lived Crypto Session Keys
Initiator’s View

Long-Lived Crypto Keys

Lookup Keys by Peer and Protocol

Select Key by Policy

Session Key Derivation

Authentication Mechanism

Initiate Session with Peer
Receiver’s View

Long-Lived Crypto Keys

Lookup Keys by KeyID

Receive Data from Peer

Session Key Derivation

Authentication Mechanism
KeyID Mapping

• Database specification mandates a 16-bit KeyID
• KeyID in the table may not be the KeyID used on the wire
 – Need to support more than just one security protocol
 – Allow translation to any needed format or size
 – Overlapping ranges may unnecessarily limit the total number of keys that can be maintained
• Mapping can resolve size mismatch and overcome overlapping range issues
 – Only applicable to local KeyID values
 – Peer’s KeyIDs are not unique in the context of the table
Initiator’s View with Mapping

Long-Lived Crypto Keys

Lookup Keys by Peer and Protocol

Select Key by Policy

Session Key Derivation and KeyID Mapping

Initiate Session with Peer

Authentication Mechanism
Recent changes and TBDs

• Recent Changes
 – Softened text regarding automated key management in routing protocols to place out of scope rather than not expected to exist
 • If such mechanisms emerge, these protocols would not have any reason to make use of this database.
 – Added brief section on database maintenance to cover key removal

• TBDs for draft-polk-...
 – Simpler examples
 – Handling simultaneous open
 – Security Considerations
Questions?