
MPTCP Application Considerations

draft-scharf-mptcp-api-02

Michael Scharf <michael.scharf@alcatel-lucent.com>

Alan Ford <alan.ford@roke.co.uk>

IETF 78, July 2010

2 | draft-scharf-mptcp-api-02 | 2010

Scope and Status

� Comparison of MPTCP and TCP

� Tutorial-style description of performance impact and potential problems

� No significant change compared to -01

� Operation of MPTCP with legacy applications

� Issues with existing sockets API: Address issues, socket options, default enabling, etc.

� Some clarifications compared to -01

� Basic API for MPTCP-aware applications

� Specification of a minimal MPTCP API

� Completely new text in -02

� Other compatibility issues

� Incompatibilities with other multihoming solutions, interactions with DNS

� Extended text in -02

� Advanced API: Out-of-scope of this draft

3 | draft-scharf-mptcp-api-02 | 2010

Operation of MPTCP with Legacy Applications

Changes Compared to -01

� Different path management MAY be used if TCP_NODELAY is set

� A new note on stack-internal heuristics potentially used by MPTCP

� E. g., to classify an application and adapt heuristics implicitly

� Addresses a comment from Anaheim

� Summary: “Use the TCP API in a reasonable way” - not that specific to MPTCP

4 | draft-scharf-mptcp-api-02 | 2010

Basic MPTCP API for MPTCP-Aware Applications

Scope

� Focus of the basic API: Minimum set of functions

� API provides an equivalent level of control and information as exists for TCP

� Only deals with enabling and address management of MPTCP

� Should be simple and rather straightforward

� Advanced API could offer more control to applications

� Out-of-scope of this draft, which only specifies the basic API

� Currently, an appendix lists some initial ideas as a potential starting point

� Suggestion: Describe advanced API in another draft, once there is more experience

� Any comments on this split between basic and advanced API?

5 | draft-scharf-mptcp-api-02 | 2010

Basic MPTCP API for MPTCP-Aware Applications

Functions getpeername() and getsockname()

� Legacy apps

� MPTCP stack MUST always return the addresses of the first subflow

� MPTCP-aware apps (which, for instance, explicitly enable MPTCP)

� Choice 1: Return address of first subflow, too

� Choice 2: Failure with EMULTIPATH, since the basic API provides an alternative

� Choice 3: Leave behavior to implementation

� No recommendation in current draft, i. e., behavior is left to implementation

� Any comments?

6 | draft-scharf-mptcp-api-02 | 2010

Basic MPTCP API for MPTCP-Aware Applications

Suggested API

� Only new socket options

� No new functions (such as bindx), to be as backward compatible as possible

� Four new socket options:

Purpose Name

TCP_MULTIPATH...

Get Set Data type

Enable/disable ..._ENABLE x x int

Bind MPTCP to a set of

given local addresses

..._BIND x list of

"struct sockaddr"

Get the addresses used

by the MPTCP subflows

..._SUBFLOWS x list of pairs of

"struct sockaddr"

Get the local connection

identifier (e. g., local token)

..._CONNID x uint32

7 | draft-scharf-mptcp-api-02 | 2010

Basic MPTCP API for MPTCP-Aware Applications

Open Issues

� TCP_MULTIPATH_BIND

� Allows to update the full list of “allowed” local addresses

� Question: Is such an explicit update during connection lifetime reasonable?

� Question: What if an interface is not present any more in the list?

� Current text: MPTCP MAY close the corresponding subflows

� Is this reasonable? Should it be stronger than a MAY for address removal? Or is this

feature unnecessary once a connection has been set up?

� TCP_MULTIPATH_CONNID

� Returns a local connection identifier for the MPTCP connection, which SHOULD be the

same as the local connection identifier sent in the MPTCP handshake.

� Provides a safe way for an application to uniquely identify a MPTCP connection

(analogous to 5-tuple in single-path TCP).

� Is there agreement that this is useful feature?

8 | draft-scharf-mptcp-api-02 | 2010

Next Steps

� Main change compared to version -01: Focus on a basic API

� Document only specifies a minimum API for address management

� An advanced API is out-of-scope and may be addressed in a separate draft

� Application considerations part of the draft seem to be rather stable

� Basic API will be aligned with the ongoing implementation efforts and experiments

� Feedback and reviews are still very welcome

� Ready for WG adoption?

� Either with the basic API

� Or, alternatively, without the basic API

