Management of 6LoWPAN Networks

Jürgen Schönwälder, Siarhei Kuryla

IETF 78, Maastricht, 2010-07-26
6LoWPAN = IPv6 over IEEE 802.15.4

IEEE 802.15.4 Characteristics
- Small frame size (max frame size = 127 bytes)
- Low power devices (some battery operated)
- Limited memory and processing power
- Low bandwidth (max data rate = 250 kbps)
- Large scale and dense deployments
- Devices and channels tend to be unreliable
- Devices may use sleep schedules to conserve energy

6LoWPAN
- IPv6 over Low-Power Wireless Personal Area Networks
- RFCs 4919, 4944, several Internet-Drafts
Protocol Stack — The Big Picture

<table>
<thead>
<tr>
<th>CoAP</th>
<th>SNMP</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UDP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPv6</td>
<td>RPL</td>
<td></td>
</tr>
<tr>
<td>6LoWPAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEEE 802.15.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Why 6LoWPAN Management?

- "Autonomic devices won’t need management — so don’t waste your time on the wrong problem..."
- Well, no, for the foreseeable future, you will end up managing the autonomic system (one more control loop)
- Key management is for example a largely unsolved problem (but specialized keying protocols might help)

Example Management Questions:

- How much energy is left in my nodes/network?
- How many nodes disappeared during the last night/day?
- What is the temperature, pressure, (add your favorite sensor here) distribution within the network?
- What is wrong with my 6LoWPAN network?
Using SNMPv3 End-to-End

+ Straight forward access to individual 6LoWPAN nodes
+ Reuse of existing deployed SNMP-based tools
 - End-to-end security, end-to-end key management
 - Message size and potential fragmentation issues
 - 6LoWPAN nodes must run an SNMP engine
 - Trap-directed polling nature of SNMP has high energy costs
Using SNMPv3 Proxies

+ Indirect access to individual 6LoWPAN nodes
+ Alternate transport encoding can reduce message sizes
 o Reuse of existing SNMP-based tools supporting proxies
 o Two security domains, different key management schemes
 - 6LoWPAN nodes must run an SNMP engine
 - Trap-directed polling nature of SNMP has high energy costs
Using SNMPv3 Subagents

SNMP Manager — SNMPv3 — SNMP Agent (6LowPAN Gateway) — Subagent Protocol — SNMP Subagent

- Indirect access to individual 6LoWPAN nodes
- Alternate transport encoding can reduce message sizes
 - Reuse of existing SNMP-based tools supporting contexts
 - Two security domains, different key management schemes
 - 6LoWPAN nodes must run an SNMP subagent
- Trap-directed polling nature of SNMP has high energy costs
Using SNMPv3 with Data Fusion Protocols

- Indirect access to individual 6LoWPAN nodes
- Leveraging data fusion protocols
- SNMP agent acting as a cache, no expensive polling
 - Reuse of existing SNMP-based tools supporting contexts
 - Two security domains, different key management schemes
- No real advantage of 6LoWPAN technology — oops
SNMP over 6LoWPAN Prototype

Targeted Hardware

ATmega1284PV microcontroller:
- runs at 20 MHz
- 16K of RAM
- 128K of ROM (Flash)

Contiki-SNMP

- implemented in C programming language
- build on top of Contiki uIPv6 stack
Contiki-SNMP Overview

General Features
- SNMP messages up to 484-byte length
- Get, GetNext and Set operations
- SNMPv1 and SNMPv3 message processing models
- USM security model
- MIB API to define and configure accessible managed objects

USM Security
- HMAC-MD5-96 authentication protocol
- CFB128-AES-128 symmetric encryption protocol
Implemented MIB Modules and Static Memory Usage

MIB Modules
- **SNMPv2-MIB** – SNMP entity information
- **IF-MIB** – network interface information
- **ENTITY-SENSOR-MIB** – temperature sensor readings

SNMPv1 and SNMPv3 enabled
- 31220 bytes of ROM (around 24% of the available ROM)
- 235 bytes of statically allocated RAM

SNMPv1 enabled
- 8860 bytes of ROM (around 7% of the available ROM)
- 43 bytes of statically allocated RAM
Stack and Heap Usage

Maximum Observed Stack Usage

<table>
<thead>
<tr>
<th>Version</th>
<th>Security mode</th>
<th>Max. stack size</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMPv1</td>
<td>–</td>
<td>688 bytes</td>
</tr>
<tr>
<td>SNMPv3</td>
<td>noAuthNoPriv</td>
<td>708 bytes</td>
</tr>
<tr>
<td>SNMPv3</td>
<td>authNoPriv</td>
<td>1140 bytes</td>
</tr>
<tr>
<td>SNMPv3</td>
<td>authPriv</td>
<td>1144 bytes</td>
</tr>
</tbody>
</table>

Heap Usage

- not more than 910 bytes for storing an SNMPv1 message
- 16 bytes for a managed object in the MIB
- if a managed object is of a string-based type heap is used to store its value
Figure: Time taken for transferring and processing an SNMP request.
Figure: Time spent in transferring and processing SNMPv1 requests and responses as a function of the number of variable bindings in a request.
<table>
<thead>
<tr>
<th>Protocol Stack — The MIB Picture</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoAP</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>UDP</td>
</tr>
<tr>
<td>IPv6</td>
</tr>
<tr>
<td>MIB</td>
</tr>
<tr>
<td>6LoWPAN</td>
</tr>
<tr>
<td>IEEE 802.15.4</td>
</tr>
</tbody>
</table>
Implementing SNMP in resource constrained networks
- How to implement minimal VACM and USM?
- Impact of different security mechanisms
- ...

Deploying SNMP in very resource constrained networks
- Naming and addressing issues
- Timeouts and retransmissions
- Polling intervals and caching issues
- Usage of the protocol operations
- ...

Applicable MIB objects/modules
- Which MIB objects are essential to support?
- Which MIB objects are recommended to support?
- Which MIB objects are optional?
- ...