A Solution Approach for AS Relationships-aware Overlay Routing

<draft-asai-cross-domain-overlay-00>

Hirochika Asai <panda@hongo.wide.ad.jp>, U. Tokyo
Hiroshi Esaki <hiroshi@wide.ad.jp>, U. Tokyo
Tsuyoshi Momose <tmomose@cisco.com>, Cisco Systems

July 28th, 2010, P2P RG, IETF 78
The Internet

- Autonomous systems (ASes)
 - e.g., ISPs, companies, and universities
- Inter-AS economics
 - transit charge
Motivation

• Reduction in transit traffic/charge

 Why?

 • Most of ISPs providing their network to P2P nodes are residential ones.
 – i.e., not tier-1, but customers

 • Transit traffic costs more compared to peering or intra-domain traffic.
Approach

- Be aware of commercial relationships between ASes
 - in overlay networks

 Similar to ALTO
 - but
 - focusing mainly on cross-domain traffic
 - with hiding ISP’s confidential information as much as possible (i.e., minimum ISP cooperation)
Detail with valley-free path model

<table>
<thead>
<tr>
<th>Destination Edge</th>
<th>p2c</th>
<th>p2p</th>
<th>c2p</th>
</tr>
</thead>
<tbody>
<tr>
<td>p2c</td>
<td>+,+</td>
<td>+,0</td>
<td>+,-</td>
</tr>
<tr>
<td>p2p</td>
<td>0,+</td>
<td>0,0</td>
<td>0,-</td>
</tr>
<tr>
<td>c2p</td>
<td>-,+</td>
<td>-,0</td>
<td>-,-</td>
</tr>
</tbody>
</table>

Note: edge ASes accommodate CDN peers.

Higher preference path:
- p2c: provider to customer
- c2p: customer to provider
- p2p: peer to peer

The worst path: both ASes pay transit charge.
Requirements (1/2):
AS relationships

• Information on AS relationships
 □ Inference methods (N.B., assuming ISPs do not want to reveal AS relationships)
 • Path analysis [Gao2001, etc]
 • Adjacency analysis [Asai2010]
 – A method for provisioning this information to peers
 » Inferred then provisioned from server(s)
 • written in the draft
Requirements (2/2): Delivery cost for a certain path

- Delivery cost computation
 - End-to-end path (AS path)
 - A method for provisioning this information to peers
 - traceroute by peers
 - Provisioned by servers in ASes
 » written in the draft
 - Function
 - i.e., \(f(P) = \) (transit charge on residential ASes)
 - \(f \): function, \(P \): AS path

AS relationships inference

- Heuristics: Common approach
 - **Degree** (i.e., # of neighbors)
 - High degree \Rightarrow large
 - tends to be provider
 - Low degree \Rightarrow small
 - tends to be customer

Diff. in degree
- **p2c**: provider to customer
- **c2p**: customer to provider
- **p2p**: peer to peer

AS relationships inference (cont’d): Improving degree-based approach

Take into account the size of n-hop neighbor ASes

\Rightarrow “Magnitude”

ASes neighboring larger ASes are also large.

Example of cost function (e.g., in CDN)

- Metrics for peer selection
 - (1) Inter-AS transit cost
 - Estimated AS relationships
 - for reducing transit traffic and charge for ASes accommodating peers
 - (2) Network cost
 - AS hop count (or distance)
 - for AS-level localization (well-known way)
 - (3) Quality
 - #simultaneous uploads
 - for avoiding deteriorating content delivery throughput (very naïve parameter…)

Simulation result:
High-cost transit traffic reduction

Fig. Breakdown of inter-domain traffic on ASes accommodating CDN peers
Simulation result:
Transit charge reduction

N.B., provider ASes charges customer ASes for transit traffic based on the exchanged traffic volume.

Fig. Charged transit traffic volume with the 95th percentile charging policy

Conclusion

- **Approach for reducing transit traffic**
 - **Pros.**
 - Not require ISPs’ information (available by end-to-end)
 - **Cons.**
 - Efficiency depends on inference methods.
- **TODO**
 - Field experiment to evaluate the system
 - Discussion on deployment possibility and next step
 - Can ISPs provide AS paths?
 - Yes → How to deploy
 - No → traceroute-based approach or other alternatives?
Thank you for your attention
Questions or Comments?

BACKUP SLIDES: SIMULATION SETUP
Improved AS relationships inference

(1) Define a weighted AS adjacency matrix

\[nA := \begin{pmatrix} \ a_{vi,vj} \end{pmatrix} \]

(i) \(n = 0 \)

\[n_{a_{vi,vj}} = \begin{cases} 1 & \text{if AS } v_i \text{ and AS } v_j \text{ are adjacent} \\ 0 & \text{otherwise} \end{cases} \]

(ii) \(n \geq 1, n \in \mathbb{Z} \)

\[n_{a_{vi,vj}} = \begin{cases} (n-1)\rho_{v_j} & \text{if AS } v_i \text{ and AS } v_j \text{ are adjacent} \\ 0 & \text{otherwise} \end{cases} \]

(2) Convert the weighted AS adjacency matrix to a traffic transition matrix

\[nT := \left(\frac{n_{a_{vi,vj}}}{\sum_{v_k} n_{a_{vi,vk}}} \right) \]

(3) Calculate the left eigenvector of the traffic transition matrix corresponding to the maximum eigenvalue

\[n\rho = [n\rho_{v_1}, \ldots, n\rho_{v_m}]^t : \text{the left eigenvector} \]

(\(\|n\rho\| = 1 \))

Peer selection preference

Peer Selection Preference

\[p(P) := \alpha c_i(P) + \beta c_t(P) + \gamma q(P) \]

\(\alpha, \beta, \gamma: \) parameters

(1) Internal CDN cost; i.e., AS relationships

\[c_i(P) := \begin{cases}
\epsilon \Delta \rho_{N,D,D} + (1 - \epsilon) \Delta \rho_{N,S,S} + 2\max \rho & (S \neq D) \\
0 & (S = D)
\end{cases} \]

\(\epsilon: \) weighting factor, \(\epsilon = 0.5 \)

(2) Total network cost

\[c_t(P) := H_{S,D} \]

(3) Quality

\[q(P) := b_s^2 \]

\(P: \) path from peer \(s \) in AS \(S \) to peer \(d \) in AS \(D \)

\(N_S: \) neighbor (next hop) AS of AS \(S \)

\(N_D: \) neighbor (previous hop) AS of AS \(D \)

\(H_{S,D}: \) AS hop count from AS \(S \) to AS \(D \)

\(b_s: \) the number of simultaneous uploads on peer \(s \)

Simulation setup

- Evaluation model
 - Request pattern
 - based on measured peer distribution in *BitTorrent*
 - Internet topology
 - CAIDA AS Relationships Dataset (10/08/2009)
- Algorithms
 - random: select one uniformly at random
 - AS-hops: minimize AS hop count
 - proposed algorithm ($\alpha = 1, \varepsilon = 0.5$): minimize preference
 - (β, γ) = {(0, 0), (0, 0.5), (50, 0), (50, 0.5)}
preprocess (measurement / annotation)

retrieve a peer list from BitTorrent tracker every minute

aggregate one-minute peer lists into a five-minute peer list

extract unique IP address list from peer lists

annotate IP addresses with an AS number and a country name

CAIDA dataset (2009/8/10)

create AS-level topology; calculate full-route from an AS relationships dataset

create request model

simulate content delivery traffic with peer selection algorithms

peer selection algorithm

create AS-level topology

divide peers into demanders/suppliers by IP address during the simulation

Every node has 20Mbps capacity for both upload and download.

suppliers
- peers which appeared in first one hour
- have already downloaded the content (piece)

#piece=100

demanders
- peers which appear in the list for the first time start to download