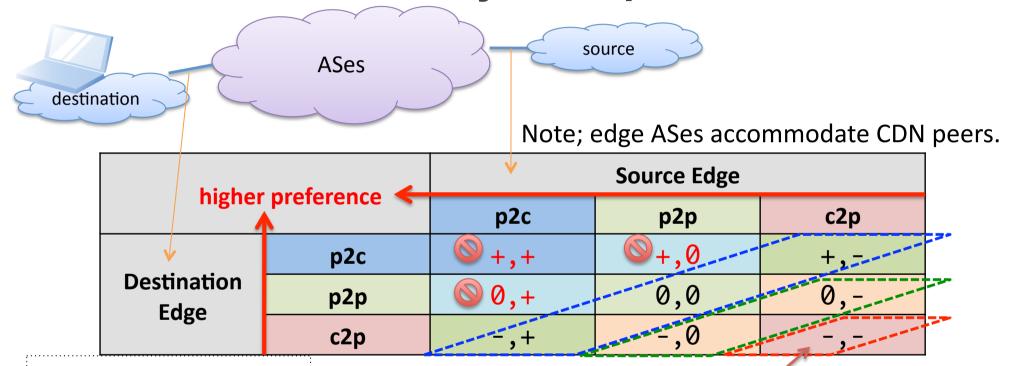

A Solution Approach for AS Relationships-aware Overlay Routing

<draft-asai-cross-domain-overlay-00>

Hirochika Asai <panda@hongo.wide.ad.jp>, U. Tokyo
 Hiroshi Esaki <hiroshi@wide.ad.jp>, U. Tokyo
 Tsuyoshi Momose <tmomose@cisco.com>, Cisco Systems
 July 28th, 2010, P2P RG, IETF 78

The Internet

- Autonomous systems (ASes)
 - e.g., ISPs, companies, and universities
- Inter-AS economics
 - transit charge


Motivation

- Reduction in transit traffic/charge
 - Why?
 - Most of ISPs providing their network to P2P nodes are residential ones.
 - i.e., not tier-1, but customers
 - Transit traffic costs more compared to peering or intra-domain traffic.

Approach

- Be aware of commercial relationships between ASes
 - in overlay networks
 - Similar to ALTO
 - but
 - focusing mainly on cross-domain traffic
 - with hiding ISP's confidential information as much as possible (i.e., minimum ISP cooperation)

Detail with valley-free path model

p2c: provider to customer

c2p: customer to provider

p2p: peer to peer

the worst path: both ASes pay transit charge.

Requirements (1/2): AS relationships

- Information on AS relationships
 - Inference methods (N.B., assuming ISPs do not want to reveal AS relationships)
 - Path analysis [Gao2001, etc]
 - Adjacency analysis [Asai2010]
 - A method for provisioning this information to peers
 - » Inferred then provisioned from server(s)
 - written in the draft

Requirements (2/2): Delivery cost for a certain path

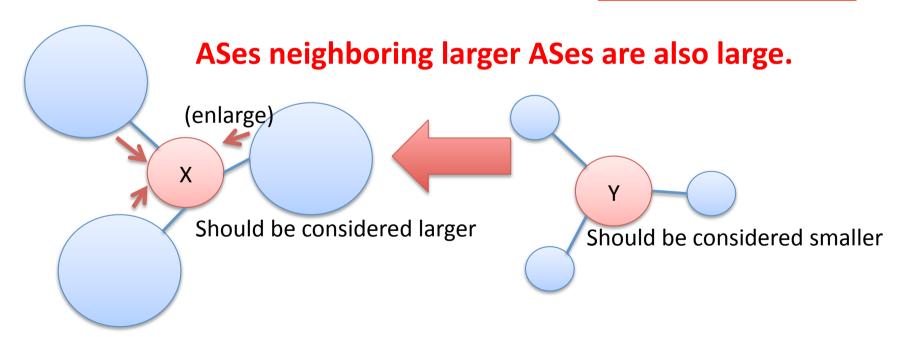
- Delivery cost computation
 - End-to-end path (AS path)
 - A method for provisioning this information to peers
 - traceroute by peers
 - Provisioned by servers in ASes
 - » written in the draft
 - Function
 - i.e., *f(P)* = (transit charge on residential ASes)
 - f: function, P: AS path

AS relationships inference

- Heuristics: Common approach
 - Degree (i.e., # of neighbors)
 - High degree ⇔ large
 - tends to be provider
 - Low degree ⇔ small
 - tends to be customer

Diff. in degree c2p ← p2p ← p2c

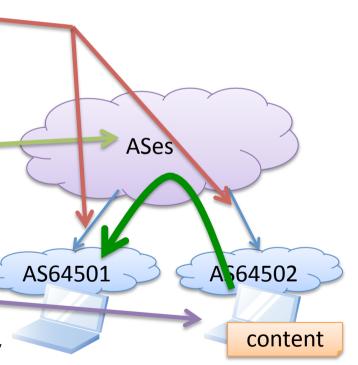
p2c: provider to customer


c2p: customer to provider

p2p: peer to peer

AS relationships inference (cont'd): Improving degree-based approach

Take into account the size of *n*-hop neighbor ASes


→ "Magnitude"

c.f. H. Asai et al., "Estimating AS Relationships for Application-Layer Traffic Optimization," 2010

Example of cost function (e.g., in CDN)

- Metrics for peer selection
 - (1) Inter-AS transit cost
 - Estimated AS relationships
 - for reducing transit traffic and charge for ASes accommodating peers
 - (2) Network cost
 - AS hop count (or distance)
 - for AS-level localization (well-known way)
 - (3) Quality
 - #simultaneous uploads
 - for avoiding deteriorating content delivery throughput (very naïve parameter...)

Simulation result: High-cost transit traffic reduction

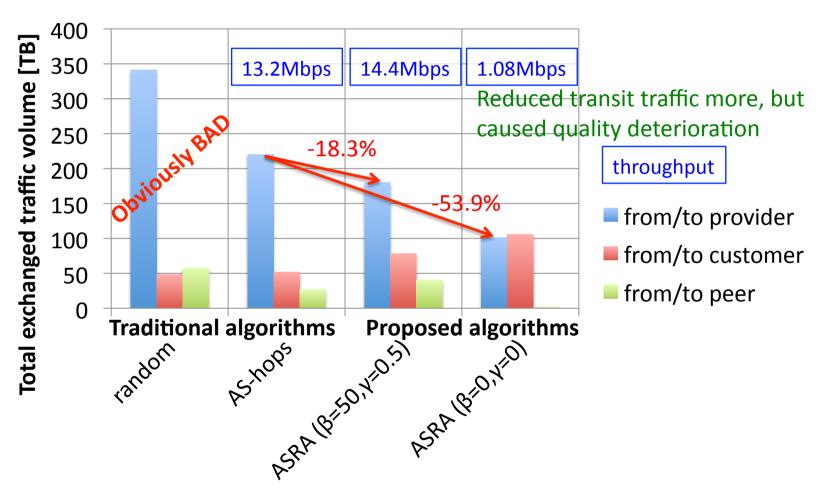


Fig. Breakdown of inter-domain traffic on ASes accommodating CDN peers

Simulation result: Transit charge reduction

N.B., provider ASes charges customer ASes for transit traffic based on the exchanged traffic volume.

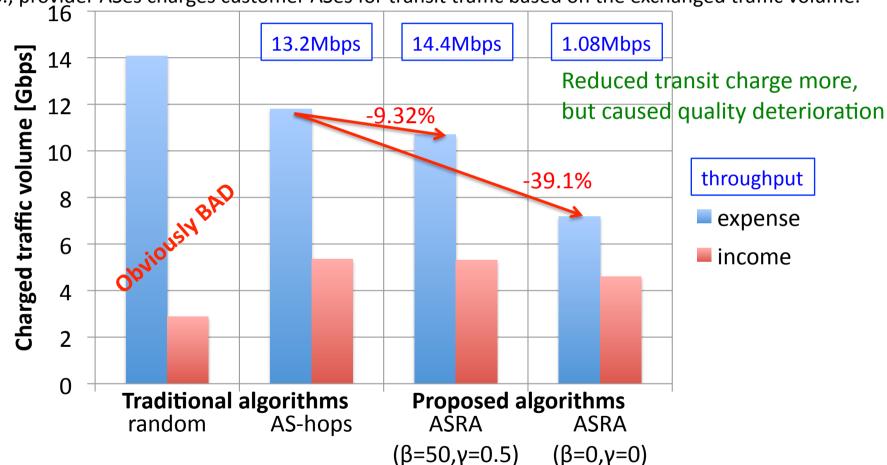


Fig. Charged transit traffic volume with the 95th percentile charging policy

Conclusion

- Approach for reducing transit traffic
 - Pros.
 - Not require ISPs' information (available by end-to-end)
 - Cons.
 - Efficiency depends on inference methods.
- TODO
 - Field experiment to evaluate the system
 - Discussion on deployment possibility and next step
 - Can ISPs provide AS paths?
 - Yes → How to deploy
 - No → traceroute-based approach or other alternatives?

BACKUP SLIDES: SIMULATION SETUP

Improved AS relationships inference

(1) Define a weighted AS adjacency matrix

$${}^{n}A := {n \choose a_{v_{i}v_{j}}} \quad \text{(i) } n = 0$$

$${}^{n}a_{v_{i}v_{j}} = \begin{cases} 1 & \text{: if AS } v_{i} \text{ and AS } v_{j} \text{ are adjacent} \\ 0 & \text{: otherwise} \end{cases}$$

$$\text{(ii) } n \ge 1, n \in \mathbb{Z}$$

$${}^{n}a_{v_{i}v_{j}} = \begin{cases} {}^{(n-1)}\rho_{v_{j}} & \text{: if AS } v_{i} \text{ and AS } v_{j} \text{ are adjacent} \\ 0 & \text{: otherwise} \end{cases}$$

(2) Convert the weighted AS adjacency matrix to a traffic transition matrix

$${}^{n}T := \left(\frac{{}^{n}a_{v_{i}v_{j}}}{\sum_{v_{k}}{}^{n}a_{v_{i}v_{k}}}\right)$$

(3) Calculate the left eigenvector of the traffic transition matrix corresponding to the maximum eigenvalue

$$[n
ho] = [n
ho_{v_1}, \cdots, n
ho_{v_m}]^t$$
 : the left eigenvector $(\|n
ho\| = 1)$

content

Peer selection preference

Peer Selection Preference

$$p(P) := \alpha c_i(P) + \beta c_t(P) + \gamma q(P)$$

 α , β , γ : parameters

ASes $\Delta^n \rho_{N_D, L}$ ر $^n\!
ho_{N_S,S}$ AS64501

AS6 502

(1) Internal CDN cost; i.e., AS relationships

 $c_i(P) := \begin{cases} \epsilon \Delta^n \rho_{N_D, D} + (1 - \epsilon) \Delta^n \rho_{N_S, S} + 2|\max^n \boldsymbol{\rho}| & (S \neq D) \\ 0 & (S - D) \end{cases}$

 ϵ : weighting factor, $\epsilon = 0.5$

(2) Total network cost

$$c_t(P) := H_{S,D}$$

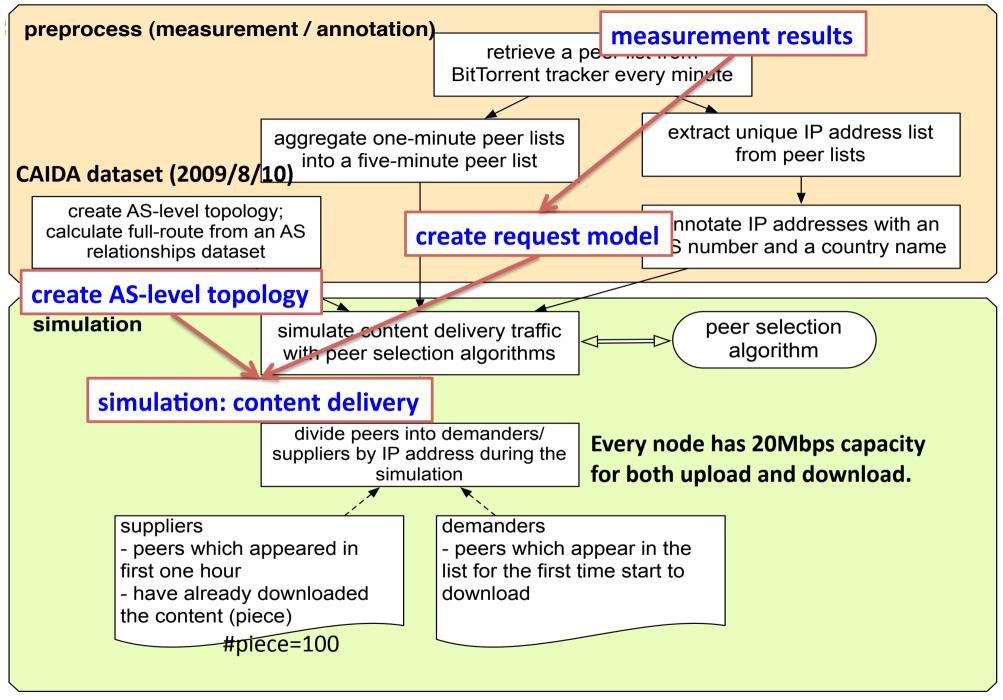
(3) Quality

$$q(P) := b_s^2$$

given (by traceroute etc.)

P: path from peer s in AS S to peer d in AS D

Ns: neighbor (next hop) AS of AS S


ND: neighbor (previous hop) AS of AS D

Hs,D: AS hop count from AS S to AS D

bs: the number of simultaneous uploads on peer s

Simulation setup

- Evaluation model
 - Request pattern
 - based on measured peer distribution in BitTorrent
 - Internet topology
 - CAIDA AS Relationships Dataset (10/08/2009)
- Algorithms
 - random: select one uniformly at random
 - AS-hops: minimize AS hop count
 - proposed algorithm ($\alpha = 1$, $\varepsilon = 0.5$): minimize preference
 - $(\beta, \gamma) = \{(0, 0), (0, 0, 5), (50, 0), (50, 0.5)\}$

7.28, 2010 H. Asai, H. Esaki and T. Momose, "AS Relationships-aware Overlay Routing"